Portrait of Emmanuel Bengio

Emmanuel Bengio

Associate Industry Member
Staff Machine Learning Scientist, Recursion
Research Topics
Deep Learning
Generative Models
GFlowNets
Molecular Modeling
Reinforcement Learning

Biography

Emmanuel Bengio is an ML Scientist at Valence Labs/Recursion, working on the intersection of GFlowNets and drug discovery. He did his PhD under Joelle Pineau and Doina Precup at McGill/Mila - Quebec Artificial Intelligence Institute, focusing on understanding generalization in deep RL.

Publications

GFlowNet Foundations
Salem Lahlou
Tristan Deleu
Edward J Hu
Mo Tiwari
GFlowNet Foundations
Salem Lahlou
Tristan Deleu
Edward J. Hu
Mo Tiwari
Learning GFlowNets from partial episodes for improved convergence and stability
Kanika Madan
Jarrid Rector-Brooks
Maksym Korablyov
Moksh J. Jain
Andrei Cristian Nica
Tom Bosc
Nikolay Malkin
Generative flow networks (GFlowNets) are a family of algorithms for training a sequential sampler of discrete objects under an unnormalized … (see more)target density and have been successfully used for various probabilistic modeling tasks. Existing training objectives for GFlowNets are either local to states or transitions, or propagate a reward signal over an entire sampling trajectory. We argue that these alternatives represent opposite ends of a gradient bias-variance tradeoff and propose a way to exploit this tradeoff to mitigate its harmful effects. Inspired by the TD(
Noisy Pairing and Partial Supervision for Stylized Opinion Summarization
Reinald Kim
Mirella Lapata. 2020
Un-611
Maxinder S. Kan-620
Asja Fischer
Somnath Basu
Roy Chowdhury
Chao Zhao
Tanya Goyal
Junyi Jiacheng Xu
Jessy Li
Ivor W. Tsang
James T. Kwok
Neil Houlsby
Andrei Giurgiu
Stanisław Jastrzębski … (see 22 more)
Bruna Morrone
Quentin de Laroussilhe
Mona Gesmundo
Attariyan Sylvain
Gelly
Thomas Wolf
Lysandre Debut
Julien Victor Sanh
Clement Chaumond
Anthony Delangue
Pier-339 Moi
Tim ric Cistac
R´emi Rault
Morgan Louf
Funtow-900 Joe
Sam Davison
Patrick Shleifer
Von Platen
Clara Ma
Yacine Jernite
Julien Plu
Canwen Xu
Opinion summarization research has primar-001 ily focused on generating summaries reflect-002 ing important opinions from customer reviews 0… (see more)03 without paying much attention to the writing 004 style. In this paper, we propose the stylized 005 opinion summarization task, which aims to 006 generate a summary of customer reviews in 007 the desired (e.g., professional) writing style. 008 To tackle the difficulty in collecting customer 009 and professional review pairs, we develop a 010 non-parallel training framework, Noisy Pair-011 ing and Partial Supervision ( NAPA ), which 012 trains a stylized opinion summarization sys-013 tem from non-parallel customer and profes-014 sional review sets. We create a benchmark P RO - 015 S UM by collecting customer and professional 016 reviews from Yelp and Michelin. Experimental 017 results on P RO S UM and FewSum demonstrate 018 that our non-parallel training framework con-019 sistently improves both automatic and human 020 evaluations, successfully building a stylized 021 opinion summarization model that can gener-022 ate professionally-written summaries from cus-023 tomer reviews. 024
Multi-Objective GFlowNets
Moksh J. Jain
Sharath Chandra Raparthy
Alex Hernandez-Garcia
Jarrid Rector-Brooks
Santiago Miret
We study the problem of generating diverse candidates in the context of Multi-Objective Optimization. In many applications of machine learni… (see more)ng such as drug discovery and material design, the goal is to generate candidates which simultaneously optimize a set of potentially conflicting objectives. Moreover, these objectives are often imperfect evaluations of some underlying property of interest, making it important to generate diverse candidates to have multiple options for expensive downstream evaluations. We propose Multi-Objective GFlowNets (MOGFNs), a novel method for generating diverse Pareto optimal solutions, based on GFlowNets. We introduce two variants of MOGFNs: MOGFN-PC, which models a family of independent sub-problems defined by a scalarization function, with reward-conditional GFlowNets, and MOGFN-AL, which solves a sequence of sub-problems defined by an acquisition function in an active learning loop. Our experiments on wide variety of synthetic and benchmark tasks demonstrate advantages of the proposed methods in terms of the Pareto performance and importantly, improved candidate diversity, which is the main contribution of this work.
Multi-Objective GFlowNets
Moksh J. Jain
Sharath Chandra Raparthy
Alex Hernandez-Garcia
Jarrid Rector-Brooks
Santiago Miret
We study the problem of generating diverse candidates in the context of Multi-Objective Optimization. In many applications of machine learni… (see more)ng such as drug discovery and material design, the goal is to generate candidates which simultaneously optimize a set of potentially conflicting objectives. Moreover, these objectives are often imperfect evaluations of some underlying property of interest, making it important to generate diverse candidates to have multiple options for expensive downstream evaluations. We propose Multi-Objective GFlowNets (MOGFNs), a novel method for generating diverse Pareto optimal solutions, based on GFlowNets. We introduce two variants of MOGFNs: MOGFN-PC, which models a family of independent sub-problems defined by a scalarization function, with reward-conditional GFlowNets, and MOGFN-AL, which solves a sequence of sub-problems defined by an acquisition function in an active learning loop. Our experiments on wide variety of synthetic and benchmark tasks demonstrate advantages of the proposed methods in terms of the Pareto performance and importantly, improved candidate diversity, which is the main contribution of this work.
Multi-Objective GFlowNets
Moksh J. Jain
Sharath Chandra Raparthy
Alex Hernandez-Garcia
Jarrid Rector-Brooks
Santiago Miret
We study the problem of generating diverse candidates in the context of Multi-Objective Optimization. In many applications of machine learni… (see more)ng such as drug discovery and material design, the goal is to generate candidates which simultaneously optimize a set of potentially conflicting objectives. Moreover, these objectives are often imperfect evaluations of some underlying property of interest, making it important to generate diverse candidates to have multiple options for expensive downstream evaluations. We propose Multi-Objective GFlowNets (MOGFNs), a novel method for generating diverse Pareto optimal solutions, based on GFlowNets. We introduce two variants of MOGFNs: MOGFN-PC, which models a family of independent sub-problems defined by a scalarization function, with reward-conditional GFlowNets, and MOGFN-AL, which solves a sequence of sub-problems defined by an acquisition function in an active learning loop. Our experiments on wide variety of synthetic and benchmark tasks demonstrate advantages of the proposed methods in terms of the Pareto performance and importantly, improved candidate diversity, which is the main contribution of this work.
Biological Sequence Design with GFlowNets
Moksh J. Jain
Alex Hernandez-Garcia
Jarrid Rector-Brooks
Bonaventure F. P. Dossou
Chanakya Ajit Ekbote
Jie Fu
Tianyu Zhang
Micheal Kilgour
Dinghuai Zhang
Lena Simine
Payel Das
E VALUATING G ENERALIZATION IN GF LOW N ETS FOR M OLECULE D ESIGN
Andrei Cristian Nica
Moksh J. Jain
Cheng-Hao Liu
Maksym Korablyov
Michael M. Bronstein
Deep learning bears promise for drug discovery problems such as de novo molecular design. Generating data to train such models is a costly a… (see more)nd time-consuming process, given the need for wet-lab experiments or expensive simulations. This problem is compounded by the notorious data-hungriness of machine learning algorithms. In small molecule generation the recently proposed GFlowNet method has shown good performance in generating diverse high-scoring candidates, and has the interesting advantage of being an off-policy offline method. Finding an appropriate generalization evaluation metric for such models, one predictive of the desired search performance (i.e. finding high-scoring diverse candidates), will help guide online data collection for such an algorithm. In this work, we develop techniques for evaluating GFlowNet performance on a test set, and identify the most promising metric for predicting generalization. We present empirical results on several small-molecule design tasks in drug discovery, for several GFlowNet training setups, and we find a metric strongly correlated with diverse high-scoring batch generation. This metric should be used to identify the best generative model from which to sample batches of molecules to be evaluated.
Trajectory Balance: Improved Credit Assignment in GFlowNets
Nikolay Malkin
Moksh J. Jain
Chen Sun
Generative flow networks (GFlowNets) are a method for learning a stochastic policy for generating compositional objects, such as graphs or s… (see more)trings, from a given unnormalized density by sequences of actions, where many possible action sequences may lead to the same object. We find previously proposed learning objectives for GFlowNets, flow matching and detailed balance, which are analogous to temporal difference learning, to be prone to inefficient credit propagation across long action sequences. We thus propose a new learning objective for GFlowNets, trajectory balance, as a more efficient alternative to previously used objectives. We prove that any global minimizer of the trajectory balance objective can define a policy that samples exactly from the target distribution. In experiments on four distinct domains, we empirically demonstrate the benefits of the trajectory balance objective for GFlowNet convergence, diversity of generated samples, and robustness to long action sequences and large action spaces.
GFlowNet Foundations
Tristan Deleu
Edward J Hu
Salem Lahlou
Mo Tiwari
GFlowNet Foundations
Tristan Deleu
Edward J Hu
Salem Lahlou
Mo Tiwari