Portrait of David Ifeoluwa Adelani

David Ifeoluwa Adelani

Core Academic Member
Canada CIFAR AI Chair
McGill University
Research Topics
Deep Learning
Natural Language Processing
Representation Learning

Biography

David Adelani is an assistant professor at McGill University’s School of Computer Science under the Fighting Inequities initiative, and a core academic member of Mila – Quebec Artificial Intelligence Institute.

Adelani’s research focuses on multilingual natural language processing with special attention to under-resourced languages.

Current Students

PhD - McGill University
Master's Research - McGill University
Research Intern - McGill University
Master's Research - McGill University

Publications

AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages
Shamsuddeen Hassan Muhammad
Idris Abdulmumin
Abinew Ayele
Nedjma OUSIDHOUM
Seid Muhie Yimam
Ibrahim Ahmad
Meriem Beloucif
Saif Mohammad
Sebastian Ruder
Oumaima Hourrane
Alipio Jorge
Pavel Brazdil
Felermino Ali
Davis David
Salomey Osei
Bello Shehu-Bello
Falalu Lawan
Tajuddeen Gwadabe
Samuel Rutunda … (see 7 more)
Tadesse Belay
Wendimu Baye Messelle
Hailu Balcha
Sisay Adugna Chala
Hagos Gebremichael
Bernard Opoku
Stephen Arthur
Findings of the 1st Shared Task on Multi-lingual Multi-task Information Retrieval at MRL 2023
Francesco Tinner
Chris Emezue
Mammad Hajili
Omer Goldman
Muhammad Farid Adilazuarda
Muhammad Dehan Al Kautsar
Aziza Mirsaidova
Müge Kural
Dylan Massey
Chiamaka Ijeoma Chukwuneke
CHINEDU EMMANUEL MBONU
Damilola Oluwaseun Oloyede
Kayode Olaleye
Jonathan Atala
Benjamin A. Ajibade
Saksham Bassi
Rahul Aralikatte
Najoung Kim
Duygu Ataman
Large language models (LLMs) excel in language understanding and generation, especially in English which has ample public benchmarks for var… (see more)ious natural language processing (NLP) tasks. Nevertheless, their reliability across different languages and domains remains uncertain. Our new shared task introduces a novel benchmark to assess the ability of multilingual LLMs to comprehend and produce language under sparse settings, particularly in scenarios with under-resourced languages, with an emphasis on the ability to capture logical, factual, or causal relationships within lengthy text contexts. The shared task consists of two sub-tasks crucial to information retrieval: Named Entity Recognition (NER) and Reading Comprehension (RC), in 7 data-scarce languages: Azerbaijani, Igbo, Indonesian, Swiss German, Turkish, Uzbek and Yorùbá, which previously lacked annotated resources in information retrieval tasks. Our evaluation of leading LLMs reveals that, despite their competitive performance, they still have notable weaknesses such as producing output in the non-target language or providing counterfactual information that cannot be inferred from the context. As more advanced models emerge, the benchmark will remain essential for supporting fairness and applicability in information retrieval systems.
A FRI S ENTI : A B ENCHMARK T WITTER S ENTIMENT A NALYSIS D ATASET FOR A FRICAN L ANGUAGES
Shamsuddeen Hassan Muhammad
Idris Abdulmumin
Abinew Ayele
Nedjma OUSIDHOUM
Seid Muhie Yimam
Meriem Beloucif
Saif Mohammad
Sebastian Ruder
Oumaima Hourrane
Pavel Brazdil
Felermino D M A Ali
Davis David
Salomey Osei
Bello Shehu-Bello
Falalu Lawan
Tajuddeen Gwadabe
Samuel Rutunda
Tadesse Belay
Wendimu Baye Messelle … (see 5 more)
Hailu Balcha
Sisay Adugna Chala
Hagos Gebremichael
Bernard Opoku
Stephen Arthur
Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yoruba) from… (see more) four language families (Afro-Asiatic, English Creole, Indo European, and Niger-Congo). We describe the data collection methodology, annotation process, and related challenges when cu-rating each of the datasets. We also build different sentiment classification baseline models on the datasets and discuss their usefulness.
MasakhaNEWS: News Topic Classification for African languages
Marek Masiak
Israel Abebe Azime
Jesujoba Oluwadara Alabi
Atnafu Lambebo Tonja
Christine Mwase
Odunayo Ogundepo
Bonaventure F. P. Dossou
Akintunde Oladipo
Doreen Nixdorf
Chris Emezue
sana Sabah al-azzawi
Blessing Kudzaishe Sibanda
Davis David
Lolwethu Ndolela
Jonathan Mukiibi
Tunde Oluwaseyi Ajayi
Tatiana Moteu Ngoli
Brian Odhiambo
Abraham Toluwase Owodunni … (see 42 more)
Nnaemeka Casmir Obiefuna
Shamsuddeen Hassan Muhammad
Saheed Salahudeen Abdullahi
Mesay Gemeda Yigezu
Tajuddeen Gwadabe
Idris Abdulmumin
Mahlet Taye Bame
Oluwabusayo Olufunke Awoyomi
Iyanuoluwa Shode
Tolulope Anu Adelani
Habiba Abdulganiy Kailani
Abdul-Hakeem Omotayo
Adetola Adeeko
Afolabi Abeeb
Aremu Anuoluwapo
Olanrewaju Samuel
Clemencia Siro
Wangari Kimotho
Onyekachi Ogbu
CHINEDU EMMANUEL MBONU
Chiamaka Ijeoma Chukwuneke
Samuel Fanijo
Jessica Ojo
Oyinkansola Fiyinfoluwa Awosan
Tadesse Kebede Guge
Toadoum Sari Sakayo
Pamela Nyatsine
Freedmore Sidume
Oreen Yousuf
Mardiyyah Oduwole
USSEN ABRE KIMANUKA
Kanda Patrick Tshinu
Thina Diko
Siyanda Nxakama
Abdulmejid Tuni Johar
Sinodos Gebre
Muhidin A. Mohamed
Shafie Abdi Mohamed
Fuad Mire Hassan
Moges Ahmed Mehamed
Evrard Ngabire
Pontus Stenetorp
African languages are severely under-represented in NLP research due to lack of datasets covering several NLP tasks. While there are individ… (see more)ual language specific datasets that are being expanded to different tasks, only a handful of NLP tasks (e.g. named entity recognition and machine translation) have standardized benchmark datasets covering several geographical and typologically-diverse African languages. In this paper, we develop MasakhaNEWS -- a new benchmark dataset for news topic classification covering 16 languages widely spoken in Africa. We provide an evaluation of baseline models by training classical machine learning models and fine-tuning several language models. Furthermore, we explore several alternatives to full fine-tuning of language models that are better suited for zero-shot and few-shot learning such as cross-lingual parameter-efficient fine-tuning (like MAD-X), pattern exploiting training (PET), prompting language models (like ChatGPT), and prompt-free sentence transformer fine-tuning (SetFit and Cohere Embedding API). Our evaluation in zero-shot setting shows the potential of prompting ChatGPT for news topic classification in low-resource African languages, achieving an average performance of 70 F1 points without leveraging additional supervision like MAD-X. In few-shot setting, we show that with as little as 10 examples per label, we achieved more than 90\% (i.e. 86.0 F1 points) of the performance of full supervised training (92.6 F1 points) leveraging the PET approach.
MasakhaPOS: Part-of-Speech Tagging for Typologically Diverse African languages
Cheikh M. Bamba Dione
Peter Nabende
Jesujoba Oluwadara Alabi
Thapelo Sindane
Happy Buzaaba
Shamsuddeen Hassan Muhammad
Chris Emezue
Perez Ogayo
Aremu Anuoluwapo
Catherine Gitau
Derguene Mbaye
Jonathan Mukiibi
Blessing Kudzaishe Sibanda
Bonaventure F. P. Dossou
Andiswa Bukula
Rooweither Mabuya
Allahsera Auguste Tapo
Edwin Munkoh-Buabeng
Victoire Memdjokam Koagne … (see 24 more)
Fatoumata Ouoba Kabore
Amelia Taylor
Godson Kalipe
Tebogo Macucwa
Vukosi Marivate
Tajuddeen Gwadabe
Mboning Tchiaze Elvis
Ikechukwu Onyenwe
Gratien Atindogbe
Tolulope Anu Adelani
Idris Akinade
Olanrewaju Samuel
Marien Nahimana
Théogène Musabeyezu
Emile Niyomutabazi
Ester Chimhenga
Kudzai Gotosa
Patrick Mizha
Apelete Agbolo
Seydou Traore
Chinedu Uchechukwu
Aliyu Yusuf
Muhammad Abdullahi
Dietrich Klakow
In this paper, we present AfricaPOS, the largest part-of-speech (POS) dataset for 20 typologically diverse African languages. We discuss the… (see more) challenges in annotating POS for these languages using the universal dependencies (UD) guidelines. We conducted extensive POS baseline experiments using both conditional random field and several multilingual pre-trained language models. We applied various cross-lingual transfer models trained with data available in the UD. Evaluating on the AfricaPOS dataset, we show that choosing the best transfer language(s) in both single-source and multi-source setups greatly improves the POS tagging performance of the target languages, in particular when combined with parameter-fine-tuning methods. Crucially, transferring knowledge from a language that matches the language family and morphosyntactic properties seems to be more effective for POS tagging in unseen languages.
MphayaNER: Named Entity Recognition for Tshivenda
Rendani Mbuvha
Tendani Mutavhatsindi
Tshimangadzo Rakhuhu
Aluwani Mauda
Tshifhiwa Joshua Maumela
Andisani Masindi
Seani Rananga
Vukosi Marivate
Tshilidzi Marwala
Named Entity Recognition (NER) plays a vital role in various Natural Language Processing tasks such as information retrieval, text classific… (see more)ation, and question answering. However, NER can be challenging, especially in low-resource languages with limited annotated datasets and tools. This paper adds to the effort of addressing these challenges by introducing MphayaNER, the first Tshivenda NER corpus in the news domain. We establish NER baselines by fine-tuning state-of-the-art models on MphayaNER. The study also explores zero-shot transfer between Tshivenda and other related Bantu languages, with Setswana, chiShona and Kiswahili showing the best results. Augmenting MphayaNER with Setwana data was also found to improve model performance significantly. Both MphayaNER and the baseline models are made publicly available.
BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting
Zheng Xin Yong
Hailey Schoelkopf
Niklas Muennighoff
Alham Fikri Aji
Khalid Almubarak
M. Saiful Bari
Lintang A. Sutawika
Jungo Kasai
Ahmed Baruwa
Genta Indra Winata
Stella Biderman
Dragomir R. Radev
Vassilina Nikoulina
The BLOOM model is a large publicly available multilingual language model, but its pretraining was limited to 46 languages. To extend the be… (see more)nefits of BLOOM to other languages without incurring prohibitively large costs, it is desirable to adapt BLOOM to new languages not seen during pretraining. In this work, we apply existing language adaptation strategies to BLOOM and benchmark its zero-shot prompting performance on eight new languages in a resource-constrained setting. We find language adaptation to be effective at improving zero-shot performance in new languages. Surprisingly, we find that adapter-based finetuning is more effective than continued pretraining for large models. In addition, we discover that prompting performance is not significantly affected by language specifics, such as the writing system. It is primarily determined by the size of the language adaptation data. We also add new languages to BLOOMZ, which is a multitask finetuned version of BLOOM capable of following task instructions zero-shot. We find including a new language in the multitask fine-tuning mixture to be the most effective method to teach BLOOMZ a new language. We conclude that with sufficient training data language adaptation can generalize well to diverse languages. Our code is available at https://github.com/bigscience-workshop/multilingual-modeling.
BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
Teven Le Scao
Angela Fan
Christopher Akiki
Ellie Pavlick
Suzana Ili'c
Daniel Hesslow
Roman Castagn'e
Alexandra Luccioni
François Yvon
Matthias Gall'e
J. Tow
Alexander M. Rush
Stella Biderman
Albert Webson
Pawan Sasanka Ammanamanchi
Thomas Wang
Benoı̂t Sagot
Niklas Muennighoff
Albert Villanova del Moral
Olatunji Ruwase … (see 372 more)
Rachel Bawden
Stas Bekman
Angelina McMillan-Major
Iz Beltagy
Huu Nguyen
Lucile Saulnier
Samson Tan
Pedro Ortiz Suarez
Victor Sanh
Hugo Laurençon
Yacine Jernite
Julien Launay
Margaret Mitchell
Colin Raffel
Aaron Gokaslan
Adi Simhi
Aitor Soroa
Alham Fikri Aji
Amit Alfassy
Anna Rogers
Ariel Kreisberg Nitzav
Canwen Xu
Chenghao Mou
Chris Emezue
Christopher Klamm
Colin D. Leong
Daniel Van Strien
Dragomir R. Radev
Eduardo González Ponferrada
Efrat Levkovizh
Ethan Kim
Eyal Bar Natan
Francesco De Toni
Gérard Dupont
Germán Kruszewski
Giada Pistilli
Hady Elsahar
Hamza Benyamina
Hieu Tran
Ian W. Yu
Idris Abdulmumin
Isaac L. Johnson
Itziar Gonzalez-Dios
Javier de la Rosa
Jenny Chim
Jesse Dodge
Jian Zhu
Jonathan Chang
Jörg Frohberg
Josephine L. Tobing
J. Bhattacharjee
Khalid Almubarak
Kimbo Chen
Kyle Lo
Leandro Von Werra
Leon Weber
Long Phan
Loubna Ben allal
Ludovic Tanguy
Manan Dey
Manuel Romero Muñoz
Maraim Masoud
Mar'ia Grandury
Mario Šaško
Max Huang
Maximin Coavoux
Mayank Singh
Mike Tian-Jian Jiang
Vu Minh Chien
Mohammad Ali Jauhar
Mustafa Ghaleb
Nishant Subramani
Nora Kassner
Nurulaqilla Khamis
Olivier Nguyen
Omar Espejel
Ona de Gibert
Paulo Villegas
Peter Henderson
Pierre Colombo
Priscilla A. Amuok
Quentin Lhoest
Rheza Harliman
Rishi Bommasani
Roberto Luis L'opez
Rui Ribeiro
Salomey Osei
Sampo Pyysalo
Sebastian Nagel
Shamik Bose
Shamsuddeen Hassan Muhammad
Shanya Sharma Sharma
Shayne Longpre
Somaieh Nikpoor
S. Silberberg
Suhas Pai
Sydney Zink
Tiago Timponi Torrent
Timo Schick
Tristan Thrush
Valentin Danchev
Vassilina Nikoulina
Veronika Laippala
Violette Lepercq
Vrinda Prabhu
Zaid Alyafeai
Zeerak Talat
Arun Raja
Benjamin Heinzerling
Chenglei Si
Elizabeth E Salesky
Sabrina J. Mielke
Wilson Y. Lee
Abheesht Sharma
Andrea Santilli
Antoine Chaffin
Arnaud Stiegler
Debajyoti Datta
Eliza Szczechla
Gunjan Chhablani
Han Wang
Harshit Pandey
Hendrik. Strobelt
Jason Alan Fries
Jos Rozen
Leo Gao
Lintang A. Sutawika
M. Saiful Bari
Maged S. Al-shaibani
Matteo Manica
Nihal V. Nayak
Ryan Teehan
Samuel Albanie
Sheng Shen
Srulik Ben-David
Stephen H. Bach
Taewoon Kim
T. Bers
Thibault F'evry
Trishala Neeraj
Urmish Thakker
Vikas Raunak
Xiang Tang
Zheng Xin Yong
Zhiqing Sun
Shaked Brody
Y. Uri
Hadar Tojarieh
Adam Roberts
Hyung Won Chung
Jaesung Tae
Jason Phang
Ofir Press
Conglong Li
D. Narayanan
Hatim Bourfoune
Jared Casper
Jeff Rasley
Max Ryabinin
Mayank Mishra
Minjia Zhang
Mohammad Shoeybi
Myriam Peyrounette
Nicolas Patry
Nouamane Tazi
Omar Sanseviero
Patrick von Platen
Pierre Cornette
Pierre Franccois Lavall'ee
R'emi Lacroix
Samyam Rajbhandari
Sanchit Gandhi
Shaden Smith
St'ephane Requena
Suraj Patil
Tim Dettmers
Ahmed Baruwa
Amanpreet Singh
Anastasia Cheveleva
Anne-Laure Ligozat
Arjun Subramonian
Aur'elie N'ev'eol
Charles Lovering
Dan Garrette
D. Tunuguntla
Ehud Reiter
Ekaterina Taktasheva
E. Voloshina
Eli Bogdanov
Genta Indra Winata
Hailey Schoelkopf
Jan-Christoph Kalo
Jekaterina Novikova
Jessica Zosa Forde
Xiangru Tang
Jungo Kasai
Ken Kawamura
Liam Hazan
Marine Carpuat
Miruna-adriana Clinciu
Najoung Kim
Newton Cheng
O. Serikov
Omer Antverg
Oskar van der Wal
Rui Zhang
Ruochen Zhang
Sebastian Gehrmann
Shachar Mirkin
S. Pais
Tatiana Shavrina
Thomas Scialom
Tian Yun
Tomasz Limisiewicz
Verena Teresa Rieser
Vitaly Protasov
V. Mikhailov
Yada Pruksachatkun
Yonatan Belinkov
Zachary Bamberger
Zdenvek Kasner
Zdeněk Kasner
A. Pestana
Amir Feizpour
Ammar Khan
Amy Faranak
A. Santos
Anthony Hevia
Antigona Unldreaj
Arash Aghagol
Arezoo Abdollahi
Aycha Tammour
Azadeh Hajihosseini
Bahareh Behroozi
Benjamin A. Ajibade
B. Saxena
Carlos Muñoz Ferrandis
Danish Contractor
D. Lansky
Davis David
Douwe Kiela
Duong Anh Nguyen
Edward Chwee Kheng. Tan
Emi Baylor
Ezinwanne Ozoani
F. Mirza
Frankline Ononiwu
Habib Rezanejad
H.A. Jones
Indrani Bhattacharya
Irene Solaiman
Irina Sedenko
Isar Nejadgholi
J. Passmore
Joshua Seltzer
Julio Bonis Sanz
Karen Fort
Livia Macedo Dutra
Mairon Samagaio
Maraim Elbadri
Margot Mieskes
Marissa Kumar Gerchick
Martha Akinlolu
Michael McKenna
Mike Qiu
M. Ghauri
Mykola Burynok
Nafis Abrar
Nazneen Fatema Rajani
Nour Elkott
N. Fahmy
Olanrewaju Samuel
Ran An
R. Kromann
Ryan Hao
Samira Hassan Alizadeh
Sarmad Shubber
Silas L. Wang
Sourav Roy
Sylvain Viguier
Thanh-Cong Le
Tobi Oyebade
T. Le
Yoyo Yang
Zach Nguyen
Abhinav R. Kashyap
Alfredo Palasciano
Alison Callahan
Anima Shukla
Antonio Miranda-Escalada
Ayush Kumar Singh
Benjamin Beilharz
Bo Wang
Caio Matheus Fonseca De Brito
Chenxi Zhou
Chirag Jain
Chuxin Xu
Cl'ementine Fourrier
Daniel Le'on Perin'an
Daniel Molano
Dian Yu
Enrique Manjavacas
Fabio Barth
Florian Fuhrimann
Gabriel Altay
Giyaseddin Bayrak
Gully Burns
Helena U. Vrabec
I. Bello
Isha Dash
J. Kang
John Michael Giorgi
Jonas Golde
J. Posada
Karthi Sivaraman
Lokesh Bulchandani
Lu Liu
Luisa Shinzato
Madeleine Hahn de Bykhovetz
Maiko Takeuchi
Marc Pamies
M. A. Castillo
Marianna Nezhurina
Mario Sanger
Matthias Samwald
Michael Joseph Cullan
Michael Weinberg
Michiel De Wolf
Mina Mihaljcic
Minna Liu
Moritz Freidank
Myungsun Kang
Natasha Seelam
Nathan Dahlberg
Nicholas Michio Broad
Nikolaus Muellner
Pascale Fung
Patricia Haller
Ramya Chandrasekhar
Patrick Haller
Renata Eisenberg
Robert Martin
Rodrigo Canalli
Rosaline Su
Ruisi Su
Samuel Cahyawijaya
Samuele Garda
Shlok S Deshmukh
Shubhanshu Mishra
Sid Kiblawi
Simon Ott
Sinee Sang-aroonsiri
Srishti Kumar
Stefan Schweter
Sushil Pratap Bharati
Tanmay Laud
Th'eo Gigant
Tomoya Kainuma
Wojciech Kusa
Yanis Labrak
Yashasvi Bajaj
Yash Venkatraman
Yifan Xu
Ying Xu
Yu Xu
Z. Tan
Zhongli Xie
Zifan Ye
Mathilde Le Bras
Younes Belkada
Thomas Wolf
Building Together - Towards a Roadmap for African Language Technologies
Kathleen Siminyu
Jade Abbott
Kọ́lá Túbọ̀sún
Aremu Anuoluwapo
Blessing Kudzaishe Sibanda
Kofi Yeboah
Masabata Mokgesi-Selinga
Frederick R. Apina
Angela Thandizwe Mthembu
Arshath Ramkilowan
Babatunde Oladimeji
Few-Shot Pidgin Text Adaptation via Contrastive Fine-Tuning
Ernie Chang
Jesujoba Oluwadara Alabi
Vera Demberg
The surging demand for multilingual dialogue systems often requires a costly labeling process for each language addition. For low resource l… (see more)anguages, human annotators are continuously tasked with the adaptation of resource-rich language utterances for each new domain. However, this prohibitive and impractical process can often be a bottleneck for low resource languages that are still without proper translation systems nor parallel corpus. In particular, it is difficult to obtain task-specific low resource language annotations for the English-derived creoles (e.g. Nigerian and Cameroonian Pidgin). To address this issue, we utilize the pretrained language models i.e. BART which has shown great potential in language generation/understanding – we propose to finetune the BART model to generate utterances in Pidgin by leveraging the proximity of the source and target languages, and utilizing positive and negative examples in constrastive training objectives. We collected and released the first parallel Pidgin-English conversation corpus in two dialogue domains and showed that this simple and effective technique is suffice to yield impressive results for English-to-Pidgin generation, which are two closely-related languages.
Findings of the WMT’22 Shared Task on Large-Scale Machine Translation Evaluation for African Languages
Md Mahfuz Ibn Alam
Antonios Anastasopoulos
Akshita Bhagia
Marta R. Costa-jussa
Jesse Dodge
Fahim Faisal
Christian Federmann
Natalia N. Fedorova
Francisco S. Guzm'an
Sergey Koshelev
Jean Maillard
Vukosi Marivate
Jonathan Mbuya
Alexandre Mourachko
Safiyyah Saleem
Holger Schwenk
Guillaume Wenzek
We present the results of the WMT’22 SharedTask on Large-Scale Machine Translation Evaluation for African Languages. The shared taskinclud… (see more)ed both a data and a systems track, alongwith additional innovations, such as a focus onAfrican languages and extensive human evaluation of submitted systems. We received 14system submissions from 8 teams, as well as6 data track contributions. We report a largeprogress in the quality of translation for Africanlanguages since the last iteration of this sharedtask: there is an increase of about 7.5 BLEUpoints across 72 language pairs, and the average BLEU scores went from 15.09 to 22.60.
Multilingual Language Model Adaptive Fine-Tuning: A Study on African Languages
Jesujoba Oluwadara Alabi
Marius Mosbach
Dietrich Klakow
and XLM-R) and three NLP tasks (NER, news topic classification, and sentiment classification) shows that our approach is competitive to ap… (see more)plying LAFT on individual languages while requiring significantly less disk space. Finally, we show that our adapted PLM also improves the zero-shot cross-lingual transfer abilities of parameter efficient fine-tuning methods.