Portrait of David Buckeridge

David Buckeridge

Associate Academic Member
Full Professor, McGill University, Department of Epidemiology, Biostatistics and Occupational Health
Research Topics
Medical Machine Learning

Biography

David Buckeridge is a professor at the School of Population and Global Health at McGill University, as well as chief digital health officer for the McGill University Health Centre and executive scientific director of the Public Health Agency of Canada.

A Tier 1 Canada Research Chair in Health Informatics and Data Science, Buckeridge has projected health system demand for the Canadian province of Quebec, led data management and analytics for the Canadian Immunity Task Force, and supported the World Health Organization in monitoring global immunity to SARS-CoV-2. He has an MD from Queen's University, an MSc in epidemiology from the University of Toronto and a PhD in biomedical informatics from Stanford University. He is a Fellow of the Royal College of Physicians of Canada.

Current Students

Master's Research - McGill University
Master's Research - McGill University
PhD - McGill University
Master's Research - McGill University
Master's Research - McGill University
Master's Research - McGill University

Publications

Both New and Chronic Potentially Inappropriate Medications Continued at Hospital Discharge Are Associated With Increased Risk of Adverse Events
Daniala L Weir
Todd C. Lee
Emily G. McDonald
Aude Motulsky
Michal Abrahamowicz
Steven Morgan
Robyn Tamblyn
Multinational Investigation of Fracture Risk with Antidepressant Use by Class, Drug, and Indication
Robyn Tamblyn
David W. Bates
William G. Dixon
Nadyne Girard
Jennifer S. Haas
Bettina Habib
Usman Iqbal
Jack Li
Therese Sheppard
Antidepressants increase the risk of falls and fracture in older adults. However, risk estimates vary considerably even in comparable popula… (see more)tions, limiting the usefulness of current evidence for clinical decision making. Our aim was to apply a common protocol to cohorts of older antidepressant users in multiple jurisdictions to estimate fracture risk associated with different antidepressant classes, drugs, doses, and potential treatment indications.
Seven pillars of precision digital health and medicine
Arash Shaban-Nejad
Martin Michalowski
Niels Peek
John S. Brownstein
Conducting gender-based analysis of existing databases when self-reported gender data are unavailable: the GENDER Index in a working population
M. Gabrielle Pagé
Bilkis Vissandjée
Hermine Lore Nguena Nguefack
Joel Katz
Oumar Mallé Samb
Alain Gillian Lucie David Manon Catherine Anaïs Benoit Alexandre Amélie Pasquale Valérie Marie-Pascale Mike Anne-Marie Marc Josiane Mireille Stéphanie Pierre Annie Isabelle Danielle Denis Jaime André Geneviève Jean-François Roxanne Marc-Antoine Pier Sonia Vanasse
Alain Gillian Lucie David Manon Catherine Anaïs Benoit A Vanasse Bartlett Blais Buckeridge Choinière Hudon
Alain Vanasse
Gillian Bartlett
Lucie Blais
Manon Choinière
Catherine Hudon
Anaïs Lacasse
Benoit Lamarche
Alexandre Lebel
Amélie Quesnel-Vallée
Pasquale Roberge
Valérie Émond
Marie-Pascale Pomey … (see 19 more)
Mike Benigeri
Anne-Marie Cloutier
Marc Dorais
Josiane Courteau
Mireille Courteau
Stéphanie Plante
Pierre Cambon
Annie Giguère
Isabelle Leroux
Danielle St-Laurent
Denis Roy
Jaime Borja
André Néron
Geneviève Landry
Jean-François Ethier
Roxanne Dault
Marc-Antoine Côté-Marcil
Pier Tremblay
Sonia Quirion
Objectives Growing attention has been given to considering sex and gender in health research. However, this remains a challenge in the conte… (see more)xt of retrospective studies where self-reported gender measures are often unavailable. This study aimed to create and validate a composite gender index using data from the Canadian Community Health Survey (CCHS). Methods According to scientific literature and expert opinion, the GENDER Index was built using several variables available in the CCHS and deemed to be gender-related (e.g., occupation, receiving child support, number of working hours). Among workers aged 18–50 years who had no missing data for our variables of interest ( n  = 29,470 participants), propensity scores were derived from a logistic regression model that included gender-related variables as covariates and where biological sex served as the dependent variable. Construct validity of propensity scores (GENDER Index scores) were then examined. Results When looking at the distribution of the GENDER Index scores in males and females, they appeared related but partly independent. Differences in the proportion of females appeared between groups categorized according to the GENDER Index scores tertiles ( p   0.0001). Construct validity was also examined through associations between the GENDER Index scores and gender-related variables identifi
Call for Papers: Novel Informatics Approaches to COVID-19 Research
Hua Xu
Fei Wang
Intelligent Tools for Precision Public Health.
Anya Okhmatovskaia
Defining ‘actionable’ high- costhealth care use: results using the Canadian Institute for Health Information population grouping methodology
Maureen Anderson
Crawford W. Revie
Henrik Stryhn
Cordell Neudorf
Yvonne Rosehart
Wenbin Li
Meriç Osman
Laura C. Rosella
Walter P. Wodchis
Fluoroquinolone Use and Seasonal Patterns of Ciprofloxacin Resistance in Community-Acquired Urinary Escherichia coli Infection in a Large Urban Center
Jean-Paul R Soucy
Alexandra M. Schmidt
Caroline Quach
Evaluation of a web-based tool for labelling potential hospital outbreaks: a mixed methods study
B. Leclère
D. Lepelletier