Portrait of David Buckeridge

David Buckeridge

Associate Academic Member
Full Professor, McGill University, Department of Epidemiology, Biostatistics and Occupational Health
Research Topics
Medical Machine Learning

Biography

David Buckeridge is a professor at the School of Population and Global Health at McGill University, as well as chief digital health officer for the McGill University Health Centre and executive scientific director of the Public Health Agency of Canada.

A Tier 1 Canada Research Chair in Health Informatics and Data Science, Buckeridge has projected health system demand for the Canadian province of Quebec, led data management and analytics for the Canadian Immunity Task Force, and supported the World Health Organization in monitoring global immunity to SARS-CoV-2. He has an MD from Queen's University, an MSc in epidemiology from the University of Toronto and a PhD in biomedical informatics from Stanford University. He is a Fellow of the Royal College of Physicians of Canada.

Current Students

Master's Research - McGill University
Master's Research - McGill University
PhD - McGill University
Master's Research - McGill University
Master's Research - McGill University
Master's Research - McGill University
Master's Research - McGill University

Publications

Modeling electronic health record data using a knowledge-graph-embedded topic model
Yuesong Zou
Ahmad Pesaranghader
Aman Verma
The rapid growth of electronic health record (EHR) datasets opens up promising opportunities to understand human diseases in a systematic wa… (see more)y. However, effective extraction of clinical knowledge from the EHR data has been hindered by its sparsity and noisy information. We present KG-ETM, an end-to-end knowledge graph-based multimodal embedded topic model. KG-ETM distills latent disease topics from EHR data by learning the embedding from the medical knowledge graphs. We applied KG-ETM to a large-scale EHR dataset consisting of over 1 million patients. We evaluated its performance based on EHR reconstruction and drug imputation. KG-ETM demonstrated superior performance over the alternative methods on both tasks. Moreover, our model learned clinically meaningful graph-informed embedding of the EHR codes. In additional, our model is also able to discover interpretable and accurate patient representations for patient stratification and drug recommendations.
A Conceptual Framework for Representing Events Under Public Health Surveillance
Anya Okhmatovskaia
Yannan Shen
Iris Ganser
Nigel Collier
Nicholas B King
Zaiqiao Meng
Information integration across multiple event-based surveillance (EBS) systems has been shown to improve global disease surveillance in expe… (see more)rimental settings. In practice, however, integration does not occur due to the lack of a common conceptual framework for encoding data within EBS systems. We aim to address this gap by proposing a candidate conceptual framework for representing events and related concepts in the domain of public health surveillance.
Mortality trends and length of stays among hospitalized patients with COVID-19 in Ontario and Québec (Canada): a population-based cohort study of the first three epidemic waves
Yiqing Xia
Huiting Ma
Marc Brisson
Beate Sander
Adrienne Chan
Aman Verma
Iris Ganser
Nadine Kronfli
Sharmistha Mishra
Mathieu Maheu-Giroux
Mortality trends and length of stays among hospitalized patients with COVID-19 in Ontario and Québec (Canada): a population-based cohort study of the first three epidemic waves
Yiqing Xia
Huiting Ma
M. Brisson
Beate H Sander
A. Chan
Aman Verma
Iris Ganser
Nadine Kronfli
Sharmistha Mishra
Mathieu Maheu-Giroux
Stringency of containment and closures on the growth of SARS-CoV-2 in Canada prior to accelerated vaccine roll-out
David Vickers
Stefan Baral
Sharmistha Mishra
Jeffrey C. Kwong
Maria Sundaram
Alan Katz
Andrew Calzavara
Mathieu Maheu-Giroux
Tyler Williamson
Timeliness of reporting of SARS-CoV-2 seroprevalence results and their utility for infectious disease surveillance
Claire Donnici
Natasha Ilincic
Christian Cao
Caseng Zhang
Gabriel Deveaux
David A. Clifton
Niklas Bobrovitz
Rahul K. Arora
Novel informatics approaches to COVID-19 Research: From methods to applications
Hua Xu
Fei Wang
P. Tarczy-Hornoch
Geographic concentration of SARS-CoV-2 cases by social determinants of health in metropolitan areas in Canada: a cross-sectional study
Yiqing Xia
Huiting Ma
Gary Moloney
Héctor A. Velásquez García
Monica Sirski
Naveed Janjua
David Vickers
Tyler Williamson
Alan Katz
Kristy Yu
K. Yiu
Rafal Kustra
Marc Brisson
Stefan Baral
Sharmistha Mishra
Mathieu Maheu-Giroux
Inferring global-scale temporal latent topics from news reports to predict public health interventions for COVID-19
Zhi Wen
Guido Powell
Imane Chafi
Y. K. Li
Exploring social inequalities in healthcare trajectories following diagnosis of diabetes: a state sequence analysis of linked survey and administrative data
Rachel Marie Mckay
Laurence Letarte
Alain Gillian Lucie David Manon Catherine Anaïs Benoit A Vanasse Bartlett Blais Buckeridge Choinière Hudon
Alain Vanasse
Gillian M. Bartlett
Lucie Blais
Manon. Choinière
Catherine. Hudon
Anaïs Lacasse
Benoit Lamarche
Alexandre Lebel
Amélie Quesnel-Vallée
Pasquale Roberge
Valérie Émond
Marie-Pascale Pomey
Mike Benigeri
Anne-Marie Cloutier
Marc Dorais
Josiane Courteau … (see 15 more)
Mireille Courteau
Stéphanie Plante
Pierre Cambon
Annie Giguère
Isabelle Nogueira Leroux
Danielle St-Laurent
Denis Roy
Jaime Borja
A. Néron
Geneviève Landry
J. Éthier
Roxanne Dault
Marc-Antoine Côté-Marcil
Pier Tremblay
Sonia Quirion
Exploring social inequalities in healthcare trajectories following diagnosis of diabetes: a state sequence analysis of linked survey and administrative data
Rachel McKay
Laurence Letarte
Alain Gillian Lucie David Manon Catherine Anaïs Benoit A Vanasse Bartlett Blais Buckeridge Choinière Hudon
Alain Gillian Lucie David Manon Catherine Anaïs Benoit Alexandre Amélie Pasquale Valérie Marie-Pascale Mike Anne-Marie Marc Josiane Mireille Stéphanie Pierre Annie Isabelle Danielle Denis Jaime André Geneviève Jean-François Roxanne Marc-Antoine Pier Sonia Vanasse
Alain Vanasse
Gillian Bartlett
Lucie Blais
Manon Choinière
Catherine Hudon
Anaïs Lacasse
Benoit Lamarche
Alexandre Lebel
Amélie Quesnel-Vallée
Pasquale Roberge
Valérie Émond
Marie-Pascale Pomey
Mike Benigeri
Anne-Marie Cloutier
Marc Dorais … (see 16 more)
Josiane Courteau
Mireille Courteau
Stéphanie Plante
Pierre Cambon
Annie Giguère
Isabelle Leroux
Danielle St-Laurent
Denis Roy
Jaime Borja
André Néron
Geneviève Landry
Jean-François Ethier
Roxanne Dault
Marc-Antoine Côté-Marcil
Pier Tremblay
Sonia Quirion
Global variation in event-based surveillance for disease outbreak detection: A time series analysis (Preprint)
Iris Ganser
Rodolphe Thiébaut
BACKGROUND Robust and flexible infectious disease surveillance is crucial for public health. Event-based surveillance (EBS) was developed t… (see more)o allow timely detection of infectious disease outbreaks using mostly web-based data. Despite its widespread use, EBS has not been evaluated systematically on a global scale in terms of outbreak detection performance. OBJECTIVE To assess the variation in timing and frequency of EBS reports compared to true outbreaks and to identify the determinants of variability, using the example of seasonal influenza epidemics in 24 countries. METHODS We obtained influenza-related reports from two EBS systems, HealthMap and the WHO Epidemic Intelligence from Open Sources (EIOS), and weekly virologic influenza counts from FluNet as a gold standard. Epidemic influenza periods were detected based on report frequency using Bayesian change point analysis. Timely sensitivity, i.e., outbreak detection within the first two weeks before or after an outbreak onset, was calculated along with sensitivity, specificity, positive predictive value, and timeliness of detection. Linear regressions were performed to assess the influence of country-specific factors on EBS performance. RESULTS Overall, monitoring the frequency of EBS reports detected 73.5% of outbreaks, but only 9.2% within two weeks of onset; in the best case, monitoring the frequency of health-related reports identified 29% of outbreaks within two weeks of onset. We observed a large degree of variability in all evaluation metrics across countries. The number of EBS reports available within a country, the human development index, and the country’s geographical location partially explained this variability. CONCLUSIONS Monitoring the frequency of EBS reports allowed just under 10% of seasonal influenza outbreaks to be detected in a timely manner in a worldwide analysis, with a large variability in detection capabilities. This article documents the global variation of EBS performance and demonstrates that monitoring report frequency alone in EBS may be insufficient for timely detection of outbreaks. Moreover, factors such as human development index and geographical location of a country may influence the performance of EBS and should be considered in future evaluations.