Publications

Neural Graph Generation from Graph Statistics.
Kiarash Zahirnia
Yaochen Hu
Oliver Schulte
Optimal Extragradient-Based Algorithms for Stochastic Variational Inequalities with Separable Structure
Angela Yuan
Chris Junchi Li
Michael Jordan
Quanquan Gu
Simon Shaolei Du
We consider the problem of solving stochastic monotone variational inequalities with a separable structure using a stochastic first-order or… (voir plus)acle. Building on standard extragradient for variational inequalities we propose a novel algorithm---stochastic \emph{accelerated gradient-extragradient} (AG-EG)---for strongly monotone variational inequalities (VIs). Our approach combines the strengths of extragradient and Nesterov acceleration. By showing that its iterates remain in a bounded domain and applying scheduled restarting, we prove that AG-EG has an optimal convergence rate for strongly monotone VIs. Furthermore, when specializing to the particular case of bilinearly coupled strongly-convex-strongly-concave saddle-point problems, including bilinear games, our algorithm achieves fine-grained convergence rates that match the respective lower bounds, with the stochasticity being characterized by an additive statistical error term that is optimal up to a constant prefactor.
Parallel-mentoring for Offline Model-based Optimization
Can Chen
Christopher Beckham
Zixuan Liu
Parallel-mentoring for Offline Model-based Optimization
Can Chen
Christopher Beckham
Zixuan Liu
We study offline model-based optimization to maximize a black-box objective function with a static dataset of designs and scores. These desi… (voir plus)gns encompass a variety of domains, including materials, robots, DNA sequences, and proteins. A common approach trains a proxy on the static dataset and performs gradient ascent to obtain new designs. However, this often results in poor designs due to the proxy inaccuracies for out-of-distribution designs. Recent studies indicate that (a) gradient ascent with a mean ensemble of proxies generally outperforms simple gradient ascent, and (b) a trained proxy provides weak ranking supervision signals for design selection. Motivated by (a) and (b), we propose
Policy Optimization in a Noisy Neighborhood: On Return Landscapes in Continuous Control
Nathan Rahn
Pierluca D'Oro
Harley Wiltzer
Deep reinforcement learning agents for continuous control are known to exhibit significant instability in their performance over time. In th… (voir plus)is work, we provide a fresh perspective on these behaviors by studying the return landscape: the mapping between a policy and a return. We find that popular algorithms traverse noisy neighborhoods of this landscape, in which a single update to the policy parameters leads to a wide range of returns. By taking a distributional view of these returns, we map the landscape, characterizing failure-prone regions of policy space and revealing a hidden dimension of policy quality. We show that the landscape exhibits surprising structure by finding simple paths in parameter space which improve the stability of a policy. To conclude, we develop a distribution-aware procedure which finds such paths, navigating away from noisy neighborhoods in order to improve the robustness of a policy. Taken together, our results provide new insight into the optimization, evaluation, and design of agents.
Prediction and Control in Continual Reinforcement Learning
Nishanth Anand
Temporal difference (TD) learning is often used to update the estimate of the value function which is used by RL agents to extract useful po… (voir plus)licies. In this paper, we focus on value function estimation in continual reinforcement learning. We propose to decompose the value function into two components which update at different timescales: a _permanent_ value function, which holds general knowledge that persists over time, and a _transient_ value function, which allows quick adaptation to new situations. We establish theoretical results showing that our approach is well suited for continual learning and draw connections to the complementary learning systems (CLS) theory from neuroscience. Empirically, this approach improves performance significantly on both prediction and control problems.
Pre-Training Protein Encoder via Siamese Sequence-Structure Diffusion Trajectory Prediction
Zuobai Zhang
Minghao Xu
Aurelie Lozano
Vijil Chenthamarakshan
Payel Das
Self-supervised pre-training methods on proteins have recently gained attention, with most approaches focusing on either protein sequences o… (voir plus)r structures, neglecting the exploration of their joint distribution, which is crucial for a comprehensive understanding of protein functions by integrating co-evolutionary information and structural characteristics. In this work, inspired by the success of denoising diffusion models in generative tasks, we propose the DiffPreT approach to pre-train a protein encoder by sequence-structure joint diffusion modeling. DiffPreT guides the encoder to recover the native protein sequences and structures from the perturbed ones along the joint diffusion trajectory, which acquires the joint distribution of sequences and structures. Considering the essential protein conformational variations, we enhance DiffPreT by a method called Siamese Diffusion Trajectory Prediction (SiamDiff) to capture the correlation between different conformers of a protein. SiamDiff attains this goal by maximizing the mutual information between representations of diffusion trajectories of structurally-correlated conformers. We study the effectiveness of DiffPreT and SiamDiff on both atom- and residue-level structure-based protein understanding tasks. Experimental results show that the performance of DiffPreT is consistently competitive on all tasks, and SiamDiff achieves new state-of-the-art performance, considering the mean ranks on all tasks. Our implementation is available at https://github.com/DeepGraphLearning/SiamDiff.
Prioritizing Samples in Reinforcement Learning with Reducible Loss
Shiva Kanth Sujit
Somjit Nath
Pedro Braga
Retrieval-Augmented Multiple Instance Learning
Yufei Cui
Ziquan Liu
Yixin CHEN
Yuchen Lu
Xinyue Yu
Tei-Wei Kuo
Miguel R. D. Rodrigues
Chun Jason Xue
Antoni B. Chan
Multiple Instance Learning (MIL) is a crucial weakly supervised learning method applied across various domains, e.g., medical diagnosis base… (voir plus)d on whole slide images (WSIs). Recent advancements in MIL algorithms have yielded exceptional performance when the training and test data originate from the same domain, such as WSIs obtained from the same hospital. However, this paper reveals a performance deterioration of MIL models when tested on an out-of-domain test set, exemplified by WSIs sourced from a novel hospital. To address this challenge, this paper introduces the Retrieval-AugMented MIL (RAM-MIL) framework, which integrates Optimal Transport (OT) as the distance metric for nearest neighbor retrieval. The development of RAM-MIL is driven by two key insights. First, a theoretical discovery indicates that reducing the input's intrinsic dimension can minimize the approximation error in attention-based MIL. Second, previous studies highlight a link between input intrinsic dimension and the feature merging process with the retrieved data. Empirical evaluations conducted on WSI classification demonstrate that the proposed RAM-MIL framework achieves state-of-the-art performance in both in-domain scenarios, where the training and retrieval data are in the same domain, and more crucially, in out-of-domain scenarios, where the (unlabeled) retrieval data originates from a different domain. Furthermore, the use of the transportation matrix derived from OT renders the retrieval results interpretable at the instance level, in contrast to the vanilla
Retrieval-Augmented Multiple Instance Learning
Yufei Cui
Ziquan Liu
Yixin CHEN
Yuchen Lu
Xinyue Yu
Tei-Wei Kuo
Miguel R. D. Rodrigues
Chun Jason Xue
Antoni B. Chan
Multiple Instance Learning (MIL) is a crucial weakly supervised learning method applied across various domains, e.g., medical diagnosis base… (voir plus)d on whole slide images (WSIs). Recent advancements in MIL algorithms have yielded exceptional performance when the training and test data originate from the same domain, such as WSIs obtained from the same hospital. However, this paper reveals a performance deterioration of MIL models when tested on an out-of-domain test set, exemplified by WSIs sourced from a novel hospital. To address this challenge, this paper introduces the Retrieval-AugMented MIL (RAM-MIL) framework, which integrates Optimal Transport (OT) as the distance metric for nearest neighbor retrieval. The development of RAM-MIL is driven by two key insights. First, a theoretical discovery indicates that reducing the input's intrinsic dimension can minimize the approximation error in attention-based MIL. Second, previous studies highlight a link between input intrinsic dimension and the feature merging process with the retrieved data. Empirical evaluations conducted on WSI classification demonstrate that the proposed RAM-MIL framework achieves state-of-the-art performance in both in-domain scenarios, where the training and retrieval data are in the same domain, and more crucially, in out-of-domain scenarios, where the (unlabeled) retrieval data originates from a different domain. Furthermore, the use of the transportation matrix derived from OT renders the retrieval results interpretable at the instance level, in contrast to the vanilla
Reusable Slotwise Mechanisms
Trang Nguyen
Amin Mansouri
Kanika Madan
Khuong N. Nguyen
Nguyen Duy Khuong
Kartik Ahuja
Dianbo Liu
Agents with the ability to comprehend and reason about the dynamics of objects would be expected to exhibit improved robustness and generali… (voir plus)zation in novel scenarios. However, achieving this capability necessitates not only an effective scene representation but also an understanding of the mechanisms governing interactions among object subsets. Recent studies have made significant progress in representing scenes using object slots. In this work, we introduce Reusable Slotwise Mechanisms, or RSM, a framework that models object dynamics by leveraging communication among slots along with a modular architecture capable of dynamically selecting reusable mechanisms for predicting the future states of each object slot. Crucially, RSM leverages the Central Contextual Information (CCI), enabling selected mechanisms to access the remaining slots through a bottleneck, effectively allowing for modeling of higher order and complex interactions that might require a sparse subset of objects. Experimental results demonstrate the superior performance of RSM compared to state-of-the-art methods across various future prediction and related downstream tasks, including Visual Question Answering and action planning. Furthermore, we showcase RSM's Out-of-Distribution generalization ability to handle scenes in intricate scenarios.
Small batch deep reinforcement learning
Johan Samir Obando Ceron
In value-based deep reinforcement learning with replay memories, the batch size parameter specifies how many transitions to sample for each … (voir plus)gradient update. Although critical to the learning process, this value is typically not adjusted when proposing new algorithms. In this work we present a broad empirical study that suggests {\em reducing} the batch size can result in a number of significant performance gains; this is surprising, as the general tendency when training neural networks is towards larger batch sizes for improved performance. We complement our experimental findings with a set of empirical analyses towards better understanding this phenomenon.