Portrait de Jackie Cheung

Jackie Cheung

Membre académique principal
Chaire en IA Canada-CIFAR
Directeur scientifique adjoint, Mila, Professeur agrégé, McGill University, École d'informatique
Chercheur consultant, Microsoft Research

Biographie

Je suis professeur agrégé à l'École d’informatique de l’Université McGill et chercheur consultant à Microsoft Research.

Mon groupe mène des recherches sur le traitement du langage naturel (NLP), un domaine de l'intelligence artificielle qui implique la construction de modèles informatiques de langages humains tels que l'anglais ou le français. Le but de nos recherches est de développer des méthodes informatiques de compréhension du texte et de la parole, afin de générer un langage fluide et adapté au contexte.

Dans notre laboratoire, nous étudions des techniques statistiques d’apprentissage automatique pour analyser et faire des prédictions sur la langue. Plusieurs projets en cours incluent la synthèse de fiction, l'extraction d'événements à partir d’un texte et l'adaptation de la langue à différents genres.

Étudiants actuels

Doctorat - McGill University
Doctorat - McGill University
Stagiaire de recherche - McGill University
Maîtrise recherche - McGill University
Co-superviseur⋅e :
Doctorat - McGill University
Maîtrise professionnelle - McGill University
Maîtrise recherche - McGill University
Doctorat - McGill University
Co-superviseur⋅e :
Maîtrise recherche - McGill University
Doctorat - McGill University
Co-superviseur⋅e :
Stagiaire de recherche - McGill University University
Postdoctorat - McGill University
Stagiaire de recherche - McGill University
Stagiaire de recherche - McGill University
Stagiaire de recherche - McGill University
Maîtrise recherche - McGill University
Doctorat - McGill University
Superviseur⋅e principal⋅e :
Stagiaire de recherche - McGill University

Publications

TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion
Jiapeng Wu
Meng Cao
William Hamilton
Inferring missing facts in temporal knowledge graphs (TKGs) is a fundamental and challenging task. Previous works have approached this probl… (voir plus)em by augmenting methods for static knowledge graphs to leverage time-dependent representations. However, these methods do not explicitly leverage multi-hop structural information and temporal facts from recent time steps to enhance their predictions. Additionally, prior work does not explicitly address the temporal sparsity and variability of entity distributions in TKGs. We propose the Temporal Message Passing (TeMP) framework to address these challenges by combining graph neural networks, temporal dynamics models, data imputation and frequency-based gating techniques. Experiments on standard TKG tasks show that our approach provides substantial gains compared to the previous state of the art, achieving a 10.7% average relative improvement in Hits@10 across three standard benchmarks. Our analysis also reveals important sources of variability both within and across TKG datasets, and we introduce several simple but strong baselines that outperform the prior state of the art in certain settings.
TESA: A Task in Entity Semantic Aggregation for Abstractive Summarization
Clément Jumel
Annie Priyadarshini Louis
Human-written texts contain frequent generalizations and semantic aggregation of content. In a document, they may refer to a pair of named e… (voir plus)ntities such as ‘London’ and ‘Paris’ with different expressions: “the major cities”, “the capital cities” and “two European cities”. Yet generation, especially, abstractive summarization systems have so far focused heavily on paraphrasing and simplifying the source content, to the exclusion of such semantic abstraction capabilities. In this paper, we present a new dataset and task aimed at the semantic aggregation of entities. TESA contains a dataset of 5.3K crowd-sourced entity aggregations of Person, Organization, and Location named entities. The aggregations are document-appropriate, meaning that they are produced by annotators to match the situational context of a given news article from the New York Times. We then build baseline models for generating aggregations given a tuple of entities and document context. We finetune on TESA an encoder-decoder language model and compare it with simpler classification methods based on linguistically informed features. Our quantitative and qualitative evaluations show reasonable performance in making a choice from a given list of expressions, but free-form expressions are understandably harder to generate and evaluate.
HipoRank: Incorporating Hierarchical and Positional Information into Graph-based Unsupervised Long Document Extractive Summarization
Yue Dong
Andrei Mircea
We propose a novel graph-based ranking model for unsupervised extractive summarization of long documents. Graph-based ranking models typical… (voir plus)ly represent documents as undirected fully-connected graphs, where a node is a sentence, an edge is weighted based on sentence-pair similarity, and sentence importance is measured via node centrality. Our method leverages positional and hierarchical information grounded in discourse structure to augment a document's graph representation with hierarchy and directionality. Experimental results on PubMed and arXiv datasets show that our approach outperforms strong unsupervised baselines by wide margins and performs comparably to some of the state-of-the-art supervised models that are trained on hundreds of thousands of examples. In addition, we find that our method provides comparable improvements with various distributional sentence representations; including BERT and RoBERTa models fine-tuned on sentence similarity.
Investigating the Influence of Selected Linguistic Features on Authorship Attribution using German News Articles
Manuel Sage
Pietro Cruciata
Raed Abdo
Yaoyao Fiona Zhao
In this work, we perform authorship attri-bution on a new dataset of German news articles. We seek to classify over 3,700 articles to their … (voir plus)five corresponding authors, using four conventional machine learning approaches (na¨ıve Bayes, logistic regression, SVM and kNN) and a convolutional neural network. We analyze the effect of character and word n-grams on the prediction accuracy, as well as the influence of stop words, punctuation, numbers, and lowercasing when preprocessing raw text. The experiments show that higher order character n-grams (n = 5,6) perform better than lower orders and word n-grams slightly outperform those with characters. Combining both in fusion models further improves results up to 92% for SVM. A multilayer convolutional structure allows the CNN to achieve 90.5% accuracy. We found stop words and punctuation to be important features for author identification; removing them leads to a measurable decrease in performance. Finally, we evaluate the topic dependency of the algorithms by gradually replacing named entities, nouns, verbs and eventually all to-kens in the dataset according to their POS-tags.
On the Systematicity of Probing Contextualized Word Representations: The Case of Hypernymy in BERT.
Abhilasha Ravichander
Eduard Hovy
Kaheer Suleman
Adam Trischler
On Variational Learning of Controllable Representations for Text without Supervision
Peng Xu
Yanshuai Cao
The variational autoencoder (VAE) can learn the manifold of natural images on certain datasets, as evidenced by meaningful interpolating or … (voir plus)extrapolating in the continuous latent space. However, on discrete data such as text, it is unclear if unsupervised learning can discover similar latent space that allows controllable manipulation. In this work, we find that sequence VAEs trained on text fail to properly decode when the latent codes are manipulated, because the modified codes often land in holes or vacant regions in the aggregated posterior latent space, where the decoding network fails to generalize. Both as a validation of the explanation and as a fix to the problem, we propose to constrain the posterior mean to a learned probability simplex, and performs manipulation within this simplex. Our proposed method mitigates the latent vacancy problem and achieves the first success in unsupervised learning of controllable representations for text. Empirically, our method outperforms unsupervised baselines and strong supervised approaches on text style transfer, and is capable of performing more flexible fine-grained control over text generation than existing methods.
Deconstructing and reconstructing word embedding algorithms
Edward Daniel Newell
Kian Kenyon-Dean
Uncontextualized word embeddings are reliable feature representations of words used to obtain high quality results for various NLP applicati… (voir plus)ons. Given the historical success of word embeddings in NLP, we propose a retrospective on some of the most well-known word embedding algorithms. In this work, we deconstruct Word2vec, GloVe, and others, into a common form, unveiling some of the necessary and sufficient conditions required for making performant word embeddings. We find that each algorithm: (1) fits vector-covector dot products to approximate pointwise mutual information (PMI); and, (2) modulates the loss gradient to balance weak and strong signals. We demonstrate that these two algorithmic features are sufficient conditions to construct a novel word embedding algorithm, Hilbert-MLE. We find that its embeddings obtain equivalent or better performance against other algorithms across 17 intrinsic and extrinsic datasets.
Preventing Posterior Collapse in Sequence VAEs with Pooling
Teng Long
Yanshuai Cao
Variational Autoencoders (VAEs) hold great potential for modelling text, as they could in theory separate high-level semantic and syntactic … (voir plus)properties from local regularities of natural language. Practically, however, VAEs with autoregressive decoders often suffer from posterior collapse, a phenomenon where the model learns to ignore the latent variables, causing the sequence VAE to degenerate into a language model. Previous works attempt to solve this problem with complex architectural changes or costly optimization schemes. In this paper, we argue that posterior collapse is caused in part by the encoder network failing to capture the input variabilities. We verify this hypothesis empirically and propose a straightforward fix using pooling. This simple technique effectively prevents posterior collapse, allowing the model to achieve significantly better data log-likelihood than standard sequence VAEs. Compared to the previous SOTA on preventing posterior collapse, we are able to achieve comparable performances while being significantly faster.
Can a Gorilla Ride a Camel? Learning Semantic Plausibility from Text
Ian Porada
Kaheer Suleman
Countering the Effects of Lead Bias in News Summarization via Multi-Stage Training and Auxiliary Losses
Matt Grenander
Yue Dong
Annie Priyadarshini Louis
Sentence position is a strong feature for news summarization, since the lead often (but not always) summarizes the key points of the article… (voir plus). In this paper, we show that recent neural systems excessively exploit this trend, which although powerful for many inputs, is also detrimental when summarizing documents where important content should be extracted from later parts of the article. We propose two techniques to make systems sensitive to the importance of content in different parts of the article. The first technique employs ‘unbiased’ data; i.e., randomly shuffled sentences of the source document, to pretrain the model. The second technique uses an auxiliary ROUGE-based loss that encourages the model to distribute importance scores throughout a document by mimicking sentence-level ROUGE scores on the training data. We show that these techniques significantly improve the performance of a competitive reinforcement learning based extractive system, with the auxiliary loss being more powerful than pretraining.
How Reasonable are Common-Sense Reasoning Tasks: A Case-Study on the Winograd Schema Challenge and SWAG
Paul Trichelair
Ali Emami
Adam Trischler
Kaheer Suleman
Recent studies have significantly improved the state-of-the-art on common-sense reasoning (CSR) benchmarks like the Winograd Schema Challeng… (voir plus)e (WSC) and SWAG. The question we ask in this paper is whether improved performance on these benchmarks represents genuine progress towards common-sense-enabled systems. We make case studies of both benchmarks and design protocols that clarify and qualify the results of previous work by analyzing threats to the validity of previous experimental designs. Our protocols account for several properties prevalent in common-sense benchmarks including size limitations, structural regularities, and variable instance difficulty.
Referring Expression Generation Using Entity Profiles
Meng Cao