Delivered in partnership with Indspire, this tailored career pathway is designed to empower Indigenous talent to learn, develop, and lead the evolution of AI. Applications for the 2025 program are open until January 31st.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (see more)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
Prominent AI experts have suggested that companies developing high-risk AI systems should be required to show that such systems are safe bef… (see more)ore they can be developed or deployed. The goal of this paper is to expand on this idea and explore its implications for risk management. We argue that entities developing or deploying high-risk AI systems should be required to present evidence of affirmative safety: a proactive case that their activities keep risks below acceptable thresholds. We begin the paper by highlighting global security risks from AI that have been acknowledged by AI experts and world governments. Next, we briefly describe principles of risk management from other high-risk fields (e.g., nuclear safety). Then, we propose a risk management approach for advanced AI in which model developers must provide evidence that their activities keep certain risks below regulator-set thresholds. As a first step toward understanding what affirmative safety cases should include, we illustrate how certain kinds of technical evidence and operational evidence can support an affirmative safety case. In the technical section, we discuss behavioral evidence (evidence about model outputs), cognitive evidence (evidence about model internals), and developmental evidence (evidence about the training process). In the operational section, we offer examples of organizational practices that could contribute to affirmative safety cases: information security practices, safety culture, and emergency response capacity. Finally, we briefly compare our approach to the NIST AI Risk Management Framework. Overall, we hope our work contributes to ongoing discussions about national and global security risks posed by AI and regulatory approaches to address these risks.
Prominent AI experts have suggested that companies developing high-risk AI systems should be required to show that such systems are safe bef… (see more)ore they can be developed or deployed. The goal of this paper is to expand on this idea and explore its implications for risk management. We argue that entities developing or deploying high-risk AI systems should be required to present evidence of affirmative safety: a proactive case that their activities keep risks below acceptable thresholds. We begin the paper by highlighting global security risks from AI that have been acknowledged by AI experts and world governments. Next, we briefly describe principles of risk management from other high-risk fields (e.g., nuclear safety). Then, we propose a risk management approach for advanced AI in which model developers must provide evidence that their activities keep certain risks below regulator-set thresholds. As a first step toward understanding what affirmative safety cases should include, we illustrate how certain kinds of technical evidence and operational evidence can support an affirmative safety case. In the technical section, we discuss behavioral evidence (evidence about model outputs), cognitive evidence (evidence about model internals), and developmental evidence (evidence about the training process). In the operational section, we offer examples of organizational practices that could contribute to affirmative safety cases: information security practices, safety culture, and emergency response capacity. Finally, we briefly compare our approach to the NIST AI Risk Management Framework. Overall, we hope our work contributes to ongoing discussions about national and global security risks posed by AI and regulatory approaches to address these risks.
This paper describes the Ubenwa CryCeleb dataset - a labeled collection of infant cries - and the accompanying CryCeleb 2023 task, which is … (see more)a public speaker verification challenge based on cry sounds. We released more than 6 hours of manually segmented cry sounds from 786 newborns for academic use, aiming to encourage research in infant cry analysis. The inaugural public competition attracted 59 participants, 11 of whom improved the baseline performance. The top-performing system achieved a significant improvement scoring 25.8% equal error rate, which is still far from the performance of state-of-the-art adult speaker verification systems. Therefore, we believe there is room for further research on this dataset, potentially extending beyond the verification task.
2024-04-14
ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (published)
The increasing success of deep neural networks has raised concerns about their inherent black-box nature, posing challenges related to inter… (see more)pretability and trust. While there has been extensive exploration of interpretation techniques in vision and language, interpretability in the audio domain has received limited attention, primarily focusing on post-hoc explanations. This paper addresses the problem of interpretability by-design in the audio domain by utilizing the recently proposed attention-free focal modulation networks (FocalNets). We apply FocalNets to the task of environmental sound classification for the first time and evaluate their interpretability properties on the popular ESC-50 dataset. Our method outperforms a similarly sized vision transformer both in terms of accuracy and interpretability. Furthermore, it is competitive against PIQ, a method specifically designed for post-hoc interpretation in the audio domain.
2024-04-14
2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW) (published)
Transformers have recently achieved state-of-the-art performance in speech separation. These models, however, are computationally demanding … (see more)and require a lot of learnable parameters. This paper explores Transformer-based speech separation with a reduced computational cost. Our main contribution is the development of the Resource-Efficient Separation Transformer (RE-SepFormer), a self-attention-based architecture that reduces the computational burden in two ways. First, it uses non-overlapping blocks in the latent space. Second, it operates on compact latent summaries calculated from each chunk. The RE-SepFormer reaches a competitive performance on the popular WSJ0-2Mix and WHAM! datasets in both causal and non-causal settings. Remarkably, it scales significantly better than the previous Transformer-based architectures in terms of memory and inference time, making it more suitable for processing long mixtures.
2024-04-14
ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (published)
Large language models (LLMs) show an innate skill for solving language based tasks. But insights have suggested an inability to adjust for i… (see more)nformation or task-solving skills becoming outdated, as their knowledge, stored directly within their parameters, remains static in time. Tool use helps by offloading work to systems that the LLM can access through an interface, but LLMs that use them still must adapt to nonstationary environments for prolonged use, as new tools can emerge and existing tools can change. Nevertheless, tools require less specialized knowledge, therefore we hypothesize they are better suited for continual learning (CL) as they rely less on parametric memory for solving tasks and instead focus on learning when to apply pre-defined tools. To verify this, we develop a synthetic benchmark and follow this by aggregating existing NLP tasks to form a more realistic testing scenario. While we demonstrate scaling model size is not a solution, regardless of tool usage, continual learning techniques can enable tool LLMs to both adapt faster while forgetting less, highlighting their potential as continual learners.