Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Semantic Commit: Helping Users Update Intent Specifications for AI Memory at Scale
We propose a new unsupervised anomaly detection method based on the sliced-Wasserstein distance for training data selection in machine learn… (see more)ing approaches. Our filtering technique is interesting for decision-making pipelines deploying machine learning models in critical sectors, e.g., power systems, as it offers a conservative data selection and an optimal transport interpretation. To ensure the scalability of our method, we provide two efficient approximations. The first approximation processes reduced-cardinality representations of the datasets concurrently. The second makes use of a computationally light Euclidian distance approximation. Additionally, we open the first dataset showcasing localized critical peak rebate demand response in a northern climate. We present the filtering patterns of our method on synthetic datasets and numerically benchmark our method for training data selection. Finally, we employ our method as part of a first forecasting benchmark for our open-source dataset.
Trade‐off of different deep learning‐based auto‐segmentation approaches for treatment planning of pediatric craniospinal irradiation autocontouring of OARs for pediatric CSI
As auto‐segmentation tools become integral to radiotherapy, more commercial products emerge. However, they may not always suit our needs. … (see more)One notable example is the use of adult‐trained commercial software for the contouring of organs at risk (OARs) of pediatric patients.
The canonical deep learning approach for learning requires computing a gradient term at each block by back-propagating the error signal from… (see more) the output towards each learnable parameter. Given the stacked structure of neural networks, where each block builds on the representation of the block below, this approach leads to hierarchical representations. More abstract features live on the top blocks of the model, while features on lower blocks are expected to be less abstract. In contrast to this, we introduce a new learning method named NoProp, which does not rely on either forward or backwards propagation across the entire network. Instead, NoProp takes inspiration from diffusion and flow matching methods, where each block independently learns to denoise a noisy target using only local targets and back-propagation within the block. We believe this work takes a first step towards introducing a new family of learning methods that does not learn hierarchical representations -- at least not in the usual sense. NoProp needs to fix the representation at each block beforehand to a noised version of the target, learning a local denoising process that can then be exploited at inference. We demonstrate the effectiveness of our method on MNIST, CIFAR-10, and CIFAR-100 image classification benchmarks. Our results show that NoProp is a viable learning algorithm, is easy to use and computationally efficient. By departing from the traditional learning paradigm which requires back-propagating a global error signal, NoProp alters how credit assignment is done within the network, enabling more efficient distributed learning as well as potentially impacting other characteristics of the learning process.
Text-to-image diffusion models have demonstrated a remarkable ability to generate photorealistic images from natural language prompts. These… (see more) high-resolution, language-guided synthesized images are essential for the explainability of disease or exploring causal relationships. However, their potential for disentangling and controlling latent factors of variation in specialized domains like medical imaging remains under-explored. In this work, we present the first investigation of the power of pre-trained vision-language foundation models, once fine-tuned on medical image datasets, to perform latent disentanglement for factorized medical image generation and interpolation. Through extensive experiments on chest X-ray and skin datasets, we illustrate that fine-tuned, language-guided Stable Diffusion inherently learns to factorize key attributes for image generation, such as the patient's anatomical structures or disease diagnostic features. We devise a framework to identify, isolate, and manipulate key attributes through latent space trajectory traversal of generative models, facilitating precise control over medical image synthesis.