We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
How Reasonable are Common-Sense Reasoning Tasks: A Case-Study on the Winograd Schema Challenge and SWAG
Recent studies have significantly improved the state-of-the-art on common-sense reasoning (CSR) benchmarks like the Winograd Schema Challeng… (see more)e (WSC) and SWAG. The question we ask in this paper is whether improved performance on these benchmarks represents genuine progress towards common-sense-enabled systems. We make case studies of both benchmarks and design protocols that clarify and qualify the results of previous work by analyzing threats to the validity of previous experimental designs. Our protocols account for several properties prevalent in common-sense benchmarks including size limitations, structural regularities, and variable instance difficulty.
2019-11-01
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (published)
Humans observe and interact with the world to acquire knowledge. However, most existing machine reading comprehension (MRC) tasks miss the i… (see more)nteractive, information-seeking component of comprehension. Such tasks present models with static documents that contain all necessary information, usually concentrated in a single short substring. Thus, models can achieve strong performance through simple word- and phrase-based pattern matching. We address this problem by formulating a novel text-based question answering task: Question Answering with Interactive Text (QAit). In QAit, an agent must interact with a partially observable text-based environment to gather information required to answer questions. QAit poses questions about the existence, location, and attributes of objects found in the environment. The data is built using a text-based game generator that defines the underlying dynamics of interaction with the environment. We propose and evaluate a set of baseline models for the QAit task that includes deep reinforcement learning agents. Experiments show that the task presents a major challenge for machine reading systems, while humans solve it with relative ease.
2019-11-01
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (published)
We present a reduction from reinforcement learning (RL) to no-regret online learning based on the saddle-point formulation of RL, by which "… (see more)any" online algorithm with sublinear regret can generate policies with provable performance guarantees. This new perspective decouples the RL problem into two parts: regret minimization and function approximation. The first part admits a standard online-learning analysis, and the second part can be quantified independently of the learning algorithm. Therefore, the proposed reduction can be used as a tool to systematically design new RL algorithms. We demonstrate this idea by devising a simple RL algorithm based on mirror descent and the generative-model oracle. For any
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (published)
Neural Module Networks, originally proposed for the task of visual question answering, are a class of neural network architectures that invo… (see more)lve human-specified neural modules, each designed for a specific form of reasoning. In current formulations of such networks only the parameters of the neural modules and/or the order of their execution is learned. In this work, we further expand this approach and also learn the underlying internal structure of modules in terms of the ordering and combination of simple and elementary arithmetic operators. We utilize a minimum amount of prior knowledge from the human-specified neural modules in the form of different input types and arithmetic operators used in these modules. Our results show that one is indeed able to simultaneously learn both internal module structure and module sequencing without extra supervisory signals for module execution sequencing. With this approach, we report performance comparable to models using hand-designed modules. In addition, we do a analysis of sensitivity of the learned modules w.r.t. the arithmetic operations and infer the analytical expressions of the learned modules.
2019-11-01
Proceedings of the Beyond Vision and LANguage: inTEgrating Real-world kNowledge (LANTERN) (published)
Collegiality is frequently portrayed as an inherent characteristic of professions, associated with normative expectations autonomously deter… (see more)mined and regulated among peers. However, in advanced modernity other modes of governance responding to societal expectations and increasing state reliance on professional expertise often appear in tension with conditions of collegiality. This article argues that collegiality is not an immutable and inherent characteristic of the governance of professional work and organizations; rather, it is the result of the ability of a profession to operationalize the normative, relational, and structural requirements of collegiality at work. This article builds on different streams of scholarship to present a dynamic approach to collegiality based on political work by professionals to protect, maintain, and reformulate collegiality as a core set of principles governing work. Productive resistance and co-production are explored for their contribution to collegiality in this context, enabling accommodation between professions and organizations to achieve collective objectives and serving as a vector of change and adaptation of professional work in contemporary organizations. Engagement in co-production influences the ability to materialize collegiality at work, just as the maintenance and transformation of collegiality will operate in a context where professions participate and negotiate compromises with others legitimate modes of governance. Our arguments build on recent studies and hypotheses concerning the interface of professions and organizations to reveal the political work that underlies the affirmation and re-affirmation of collegiality as a mode of governance of work based on resistance and co-production.
2019-10-24
Journal of Professions and Organization (published)
We release the largest public ECG dataset of continuous raw signals for representation learning containing 11 thousand patients and 2 billio… (see more)n labelled beats. Our goal is to enable semi-supervised ECG models to be made as well as to discover unknown subtypes of arrhythmia and anomalous ECG signal events. To this end, we propose an unsupervised representation learning task, evaluated in a semi-supervised fashion. We provide a set of baselines for different feature extractors that can be built upon. Additionally, we perform qualitative evaluations on results from PCA embeddings, where we identify some clustering of known subtypes indicating the potential for representation learning in arrhythmia sub-type discovery.
Recent advances have made it possible to create deep complex-valued neural networks. Despite this progress, many challenging learning tasks … (see more)have yet to leverage the power of complex representations. Building on recent advances, we propose a new deep complex-valued method for signal retrieval and extraction in the frequency domain. As a case study, we perform audio source separation in the Fourier domain. Our new method takes advantage of the convolution theorem which states that the Fourier transform of two convolved signals is the elementwise product of their Fourier transforms. Our novel method is based on a complex-valued version of Feature-Wise Linear Modulation (FiLM) and serves as the keystone of our proposed signal extraction method. We also introduce a new and explicit amplitude and phase-aware loss, which is scale and time invariant, taking into account the complex-valued components of the spectrogram. Using the Wall Street Journal Dataset, we compared our phase-aware loss to several others that operate both in the time and frequency domains and demonstrate the effectiveness of our proposed signal extraction method and proposed loss.