How Reasonable are Common-Sense Reasoning Tasks: A Case-Study on the Winograd Schema Challenge and SWAG
Paul Trichelair
Ali Emami
Adam Trischler
Kaheer Suleman
Recent studies have significantly improved the state-of-the-art on common-sense reasoning (CSR) benchmarks like the Winograd Schema Challeng… (see more)e (WSC) and SWAG. The question we ask in this paper is whether improved performance on these benchmarks represents genuine progress towards common-sense-enabled systems. We make case studies of both benchmarks and design protocols that clarify and qualify the results of previous work by analyzing threats to the validity of previous experimental designs. Our protocols account for several properties prevalent in common-sense benchmarks including size limitations, structural regularities, and variable instance difficulty.
Interactive Language Learning by Question Answering
Xingdi Yuan
Marc-Alexandre Côté
Jie Fu
Zhouhan Lin
Adam Trischler
Humans observe and interact with the world to acquire knowledge. However, most existing machine reading comprehension (MRC) tasks miss the i… (see more)nteractive, information-seeking component of comprehension. Such tasks present models with static documents that contain all necessary information, usually concentrated in a single short substring. Thus, models can achieve strong performance through simple word- and phrase-based pattern matching. We address this problem by formulating a novel text-based question answering task: Question Answering with Interactive Text (QAit). In QAit, an agent must interact with a partially observable text-based environment to gather information required to answer questions. QAit poses questions about the existence, location, and attributes of objects found in the environment. The data is built using a text-based game generator that defines the underlying dynamics of interaction with the environment. We propose and evaluate a set of baseline models for the QAit task that includes deep reinforcement learning agents. Experiments show that the task presents a major challenge for machine reading systems, while humans solve it with relative ease.
A Reduction from Reinforcement Learning to No-Regret Online Learning
Ching-An Cheng
Remi Tachet des Combes
Byron Boots
We present a reduction from reinforcement learning (RL) to no-regret online learning based on the saddle-point formulation of RL, by which "… (see more)any" online algorithm with sublinear regret can generate policies with provable performance guarantees. This new perspective decouples the RL problem into two parts: regret minimization and function approximation. The first part admits a standard online-learning analysis, and the second part can be quantified independently of the learning algorithm. Therefore, the proposed reduction can be used as a tool to systematically design new RL algorithms. We demonstrate this idea by devising a simple RL algorithm based on mirror descent and the generative-model oracle. For any
Referring Expression Generation Using Entity Profiles
Meng Cao
Structure Learning for Neural Module Networks
Vardaan Pahuja
Jie Fu
Neural Module Networks, originally proposed for the task of visual question answering, are a class of neural network architectures that invo… (see more)lve human-specified neural modules, each designed for a specific form of reasoning. In current formulations of such networks only the parameters of the neural modules and/or the order of their execution is learned. In this work, we further expand this approach and also learn the underlying internal structure of modules in terms of the ordering and combination of simple and elementary arithmetic operators. We utilize a minimum amount of prior knowledge from the human-specified neural modules in the form of different input types and arithmetic operators used in these modules. Our results show that one is indeed able to simultaneously learn both internal module structure and module sequencing without extra supervisory signals for module execution sequencing. With this approach, we report performance comparable to models using hand-designed modules. In addition, we do a analysis of sensitivity of the learned modules w.r.t. the arithmetic operations and infer the analytical expressions of the learned modules.
Fluoroquinolone Use and Seasonal Patterns of Ciprofloxacin Resistance in Community-Acquired Urinary Escherichia coli Infection in a Large Urban Center
Jean-Paul R Soucy
Alexandra M. Schmidt
Caroline Quach
Ordered Memory
Yikang Shen
Shawn Tan
Seyedarian Hosseini
Zhouhan Lin
Ordered Memory
Yikang Shen
Shawn Tan
Seyedarian Hosseini
Zhouhan Lin
A deep learning framework for neuroscience
Timothy P. Lillicrap
Philippe Beaudoin
Rafal Bogacz
Amelia Christensen
Claudia Clopath
Rui Ponte Costa
Archy de Berker
Surya Ganguli
Colleen J Gillon
Danijar Hafner
Adam Kepecs
Nikolaus Kriegeskorte
Peter Latham
Grace W. Lindsay
Kenneth D. Miller
Richard Naud
Christopher C. Pack
Panayiota Poirazi … (see 12 more)
Pieter Roelfsema
João Sacramento
Andrew Saxe
Benjamin Scellier
Anna C. Schapiro
Walter Senn
Greg Wayne
Daniel Yamins
Friedemann Zenke
Joel Zylberberg
Denis Therien
Konrad Paul Kording
Collegiality as political work: Professions in today’s world of organizations
Jean-Louis Denis
Gianluca Veronesi
Sabrina Germain
Collegiality is frequently portrayed as an inherent characteristic of professions, associated with normative expectations autonomously deter… (see more)mined and regulated among peers. However, in advanced modernity other modes of governance responding to societal expectations and increasing state reliance on professional expertise often appear in tension with conditions of collegiality. This article argues that collegiality is not an immutable and inherent characteristic of the governance of professional work and organizations; rather, it is the result of the ability of a profession to operationalize the normative, relational, and structural requirements of collegiality at work. This article builds on different streams of scholarship to present a dynamic approach to collegiality based on political work by professionals to protect, maintain, and reformulate collegiality as a core set of principles governing work. Productive resistance and co-production are explored for their contribution to collegiality in this context, enabling accommodation between professions and organizations to achieve collective objectives and serving as a vector of change and adaptation of professional work in contemporary organizations. Engagement in co-production influences the ability to materialize collegiality at work, just as the maintenance and transformation of collegiality will operate in a context where professions participate and negotiate compromises with others legitimate modes of governance. Our arguments build on recent studies and hypotheses concerning the interface of professions and organizations to reveal the political work that underlies the affirmation and re-affirmation of collegiality as a mode of governance of work based on resistance and co-production.
Icentia11K: An Unsupervised Representation Learning Dataset for Arrhythmia Subtype Discovery
Shawn Tan
Guillaume Androz
Ahmad Chamseddine
Pierre Fecteau
Joseph Paul Cohen
We release the largest public ECG dataset of continuous raw signals for representation learning containing 11 thousand patients and 2 billio… (see more)n labelled beats. Our goal is to enable semi-supervised ECG models to be made as well as to discover unknown subtypes of arrhythmia and anomalous ECG signal events. To this end, we propose an unsupervised representation learning task, evaluated in a semi-supervised fashion. We provide a set of baselines for different feature extractors that can be built upon. Additionally, we perform qualitative evaluations on results from PCA embeddings, where we identify some clustering of known subtypes indicating the potential for representation learning in arrhythmia sub-type discovery.
Retrieving Signals with Deep Complex Extractors
Chiheb Trabelsi
Olexa Bilaniuk
Ousmane Dia
Ying Zhang
Jonathan Binas
Recent advances have made it possible to create deep complex-valued neural networks. Despite this progress, many challenging learning tasks … (see more)have yet to leverage the power of complex representations. Building on recent advances, we propose a new deep complex-valued method for signal retrieval and extraction in the frequency domain. As a case study, we perform audio source separation in the Fourier domain. Our new method takes advantage of the convolution theorem which states that the Fourier transform of two convolved signals is the elementwise product of their Fourier transforms. Our novel method is based on a complex-valued version of Feature-Wise Linear Modulation (FiLM) and serves as the keystone of our proposed signal extraction method. We also introduce a new and explicit amplitude and phase-aware loss, which is scale and time invariant, taking into account the complex-valued components of the spectrogram. Using the Wall Street Journal Dataset, we compared our phase-aware loss to several others that operate both in the time and frequency domains and demonstrate the effectiveness of our proposed signal extraction method and proposed loss.