Training End-to-End Analog Neural Networks with Equilibrium Propagation
Jack D. Kendall
Ross D. Pantone
Kalpana Manickavasagam
Benjamin Scellier
We introduce a principled method to train end-to-end analog neural networks by stochastic gradient descent. In these analog neural networks,… (see more) the weights to be adjusted are implemented by the conductances of programmable resistive devices such as memristors [Chua, 1971], and the nonlinear transfer functions (or `activation functions') are implemented by nonlinear components such as diodes. We show mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models: they possess an energy function as a consequence of Kirchhoff's laws governing electrical circuits. This property enables us to train them using the Equilibrium Propagation framework [Scellier and Bengio, 2017]. Our update rule for each conductance, which is local and relies solely on the voltage drop across the corresponding resistor, is shown to compute the gradient of the loss function. Our numerical simulations, which use the SPICE-based Spectre simulation framework to simulate the dynamics of electrical circuits, demonstrate training on the MNIST classification task, performing comparably or better than equivalent-size software-based neural networks. Our work can guide the development of a new generation of ultra-fast, compact and low-power neural networks supporting on-chip learning.
Multi-Image Super-Resolution for Remote Sensing using Deep Recurrent Networks
Md Rifat Arefin
Vincent Michalski
Pierre-Luc St-Charles
Alfredo Kalaitzis
Sookyung Kim
High-resolution satellite imagery is critical for various earth observation applications related to environment monitoring, geoscience, fore… (see more)casting, and land use analysis. However, the acquisition cost of such high-quality imagery due to the scarcity of providers and needs for high-frequency revisits restricts its accessibility in many fields. In this work, we present a data-driven, multi-image super resolution approach to alleviate these problems. Our approach is based on an end-to-end deep neural network that consists of an encoder, a fusion module, and a decoder. The encoder extracts co-registered highly efficient feature representations from low-resolution images of a scene. A Gated Re-current Unit (GRU)-based module acts as the fusion module, aggregating features into a combined representation. Finally, a decoder reconstructs the super-resolved image. The proposed model is evaluated on the PROBA-V dataset released in a recent competition held by the European Space Agency. Our results show that it performs among the top contenders and offers a new practical solution for real-world applications.
Population variability in social brain morphology for social support, household size and friendship satisfaction
Arezoo Taebi
Hannah Kiesow
Kai Vogeley
Leonhard Schilbach
Boris C Bernhardt
Restless bandits: indexability and computation of Whittle index
Nima Akbarzadeh
Restless bandits are a class of sequential resource allocation problems concerned with allocating one or more resources among several altern… (see more)ative processes where the evolution of the process depends on the resource allocated to them. Such models capture the fundamental trade-offs between exploration and exploitation. In 1988, Whittle developed an index heuristic for restless bandit problems which has emerged as a popular solution approach due to its simplicity and strong empirical performance. The Whittle index heuristic is applicable if the model satisfies a technical condition known as indexability. In this paper, we present two general sufficient conditions for indexability and identify simpler to verify refinements of these conditions. We then present a general algorithm to compute Whittle index for indexable restless bandits. Finally, we present a detailed numerical study which affirms the strong performance of the Whittle index heuristic.
GIANT: Scalable Creation of a Web-scale Ontology
Weidong Guo
Di Niu
Jinwen Luo
Chaoyue Wang
Zhen Wen
Yu Xu
Current works and future directions on application of machine learning in primary care
Vera Granikov
Pierre Pluye
In this short paper, we explained current machine learning works in primary care based on a scoping review that we performed. The performed … (see more)review was in line with the methodological framework proposed by Colquhoun and colleagues. Lastly, we discussed our observations and gave important directions to the future studies in this fast-growing area.
Failure to follow medication changes made at hospital discharge is associated with adverse events in 30 days
Daniala L Weir
Aude Motulsky
Michal Abrahamowicz
Todd C. Lee
Steven Morgan
Robyn Tamblyn
Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis
Aaron Carass
Snehashis Roy
Adrian Gherman
Jacob C. Reinhold
Andrew Jesson
Oskar Maier
Heinz Handels
Mohsen Ghafoorian
Bram Platel
Ariel Birenbaum
Hayit Greenspan
Dzung L. Pham
Ciprian M. Crainiceanu
Peter A. Calabresi
Jerry L. Prince
William R. Gray Roncal
Russell T. Shinohara
Ipek Oguz
An Analysis of the Adaptation Speed of Causal Models
Rémi LE PRIOL
Reza Babanezhad Harikandeh
We consider the problem of discovering the causal process that generated a collection of datasets. We assume that all these datasets were ge… (see more)nerated by unknown sparse interventions on a structural causal model (SCM)
COVI White Paper
Hannah Alsdurf
Tristan Deleu
Prateek Gupta
Daphne Ippolito
Richard Janda
Max Jarvie
Tyler J. Kolody
Sekoul Krastev
Robert Obryk
Dan Pilat
Valerie Pisano
Benjamin Prud'homme
Meng Qu
Nasim Rahaman
Jean-franois Rousseau
Abhinav Sharma
Brooke Struck … (see 3 more)
Martin Weiss
Yun William Yu
The SARS-CoV-2 (Covid-19) pandemic has caused significant strain on public health institutions around the world. Contact tracing is an essen… (see more)tial tool to change the course of the Covid-19 pandemic. Manual contact tracing of Covid-19 cases has significant challenges that limit the ability of public health authorities to minimize community infections. Personalized peer-to-peer contact tracing through the use of mobile apps has the potential to shift the paradigm. Some countries have deployed centralized tracking systems, but more privacy-protecting decentralized systems offer much of the same benefit without concentrating data in the hands of a state authority or for-profit corporations. Machine learning methods can circumvent some of the limitations of standard digital tracing by incorporating many clues and their uncertainty into a more graded and precise estimation of infection risk. The estimated risk can provide early risk awareness, personalized recommendations and relevant information to the user. Finally, non-identifying risk data can inform epidemiological models trained jointly with the machine learning predictor. These models can provide statistical evidence for the importance of factors involved in disease transmission. They can also be used to monitor, evaluate and optimize health policy and (de)confinement scenarios according to medical and economic productivity indicators. However, such a strategy based on mobile apps and machine learning should proactively mitigate potential ethical and privacy risks, which could have substantial impacts on society (not only impacts on health but also impacts such as stigmatization and abuse of personal data). Here, we present an overview of the rationale, design, ethical considerations and privacy strategy of `COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
COVI White Paper
Hannah Alsdurf
Tristan Deleu
Prateek Gupta
Daphne Ippolito
Richard Janda
Max Jarvie
Tyler J. Kolody
Sekoul Krastev
Robert Obryk
Dan Pilat
Valerie Pisano
Benjamin Prud'homme
Meng Qu
Nasim Rahaman
Jean-franois Rousseau
Abhinav Sharma
Brooke Struck … (see 3 more)
Martin Weiss
Yun William Yu
COVI White Paper
Hannah Alsdurf
Tristan Deleu
Prateek Gupta
Daphne Ippolito
Richard Janda
Max Jarvie
Tyler J. Kolody
Sekoul Krastev
Robert Obryk
Dan Pilat
Valerie Pisano
Benjamin Prud'homme
Meng Qu
Nasim Rahaman
Jean-franois Rousseau
Abhinav Sharma
Brooke Struck … (see 3 more)
Martin Weiss
Yun William Yu