We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Deep Multirepresentation Learning for Data Clustering.
Deep clustering incorporates embedding into clustering in order to find a lower-dimensional space suitable for clustering tasks. Conventiona… (see more)l deep clustering methods aim to obtain a single global embedding subspace (aka latent space) for all the data clusters. In contrast, in this article, we propose a deep multirepresentation learning (DML) framework for data clustering whereby each difficult-to-cluster data group is associated with its own distinct optimized latent space and all the easy-to-cluster data groups are associated with a general common latent space. Autoencoders (AEs) are employed for generating cluster-specific and general latent spaces. To specialize each AE in its associated data cluster(s), we propose a novel and effective loss function which consists of weighted reconstruction and clustering losses of the data points, where higher weights are assigned to the samples more probable to belong to the corresponding cluster(s). Experimental results on benchmark datasets demonstrate that the proposed DML framework and loss function outperform state-of-the-art clustering approaches. In addition, the results show that the DML method significantly outperforms the SOTA on imbalanced datasets as a result of assigning an individual latent space to the difficult clusters.
2023-07-07
IEEE Transactions on Neural Networks and Learning Systems (published)
We tackle the problems of latent variables identification and ``out-of-support'' image generation in representation learning. We show that b… (see more)oth are possible for a class of decoders that we call additive, which are reminiscent of decoders used for object-centric representation learning (OCRL) and well suited for images that can be decomposed as a sum of object-specific images. We provide conditions under which exactly solving the reconstruction problem using an additive decoder is guaranteed to identify the blocks of latent variables up to permutation and block-wise invertible transformations. This guarantee relies only on very weak assumptions about the distribution of the latent factors, which might present statistical dependencies and have an almost arbitrarily shaped support. Our result provides a new setting where nonlinear independent component analysis (ICA) is possible and adds to our theoretical understanding of OCRL methods. We also show theoretically that additive decoders can generate novel images by recombining observed factors of variations in novel ways, an ability we refer to as Cartesian-product extrapolation. We show empirically that additivity is crucial for both identifiability and extrapolation on simulated data.
Generative Flow Networks or GFlowNets are related to Monte-Carlo Markov chain methods (as they sample from a distribution specified by an en… (see more)ergy function), reinforcement learning (as they learn a policy to sample composed objects through a sequence of steps), generative models (as they learn to represent and sample from a distribution) and amortized variational methods (as they can be used to learn to approximate and sample from an otherwise intractable posterior, given a prior and a likelihood). They are trained to generate an object
2023-07-03
Proceedings of the 40th International Conference on Machine Learning (published)
We introduce a value-based RL agent, which we call BBF, that achieves super-human performance in the Atari 100K benchmark. BBF relies on sca… (see more)ling the neural networks used for value estimation, as well as a number of other design choices that enable this scaling in a sample-efficient manner. We conduct extensive analyses of these design choices and provide insights for future work. We end with a discussion about updating the goalposts for sample-efficient RL research on the ALE. We make our code and data publicly available at https://github.com/google-research/google-research/tree/master/bigger_better_faster.
2023-07-03
Proceedings of the 40th International Conference on Machine Learning (published)
In reinforcement learning (RL), state representations are key to dealing with large or continuous state spaces. While one of the promises of… (see more) deep learning algorithms is to automatically construct features well-tuned for the task they try to solve, such a representation might not emerge from end-to-end training of deep RL agents. To mitigate this issue, auxiliary objectives are often incorporated into the learning process and help shape the learnt state representation. Bootstrapping methods are today's method of choice to make these additional predictions. Yet, it is unclear which features these algorithms capture and how they relate to those from other auxiliary-task-based approaches. In this paper, we address this gap and provide a theoretical characterization of the state representation learnt by temporal difference learning (Sutton, 1988). Surprisingly, we find that this representation differs from the features learned by Monte Carlo and residual gradient algorithms for most transition structures of the environment in the policy evaluation setting. We describe the efficacy of these representations for policy evaluation, and use our theoretical analysis to design new auxiliary learning rules. We complement our theoretical results with an empirical comparison of these learning rules for different cumulant functions on classic domains such as the four-room domain (Sutton et al, 1999) and Mountain Car (Moore, 1990).
2023-07-03
Proceedings of the 40th International Conference on Machine Learning (published)
We approach the problem of improving robustness of deep learning algorithms in the presence of label noise. Building upon existing label cor… (see more)rection and co-teaching methods, we propose a novel training procedure to mitigate the memorization of noisy labels, called CrossSplit, which uses a pair of neural networks trained on two disjoint parts of the labeled dataset. CrossSplit combines two main ingredients: (i) Cross-split label correction. The idea is that, since the model trained on one part of the data cannot memorize example-label pairs from the other part, the training labels presented to each network can be smoothly adjusted by using the predictions of its peer network; (ii) Cross-split semi-supervised training. A network trained on one part of the data also uses the unlabeled inputs of the other part. Extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet and mini-WebVision datasets demonstrate that our method can outperform the current state-of-the-art in a wide range of noise ratios. The project page is at https://rlawlgul.github.io/.
2023-07-03
Proceedings of the 40th International Conference on Machine Learning (published)
Deep Reinforcement Learning has shown significant progress in extracting useful representations from high-dimensional inputs albeit using ha… (see more)nd-crafted auxiliary tasks and pseudo rewards. Automatically learning such representations in an object-centric manner geared towards control and fast adaptation remains an open research problem. In this paper, we introduce a method that tries to discover meaningful features from objects, translating them to temporally coherent"question"functions and leveraging the subsequent learned general value functions for control. We compare our approach with state-of-the-art techniques alongside other ablations and show competitive performance in both stationary and non-stationary settings. Finally, we also investigate the discovered general value functions and through qualitative analysis show that the learned representations are not only interpretable but also, centered around objects that are invariant to changes across tasks facilitating fast adaptation.
2023-07-03
Proceedings of the 40th International Conference on Machine Learning (published)