HalluciDet: Hallucinating RGB Modality for Person Detection Through Privileged Information
Heitor Rapela Medeiros
Fidel A. Guerrero Peña
Masih Aminbeidokhti
Thomas Dubail
Eric Granger
A powerful way to adapt a visual recognition model to a new domain is through image translation. However, common image translation approache… (see more)s only focus on generating data from the same distribution as the target domain. Given a cross-modal application, such as pedestrian detection from aerial images, with a considerable shift in data distribution between infrared (IR) to visible (RGB) images, a translation focused on generation might lead to poor performance as the loss focuses on irrelevant details for the task. In this paper, we propose HalluciDet, an IR-RGB image translation model for object detection. Instead of focusing on reconstructing the original image on the IR modality, it seeks to reduce the detection loss of an RGB detector, and therefore avoids the need to access RGB data. This model produces a new image representation that enhances objects of interest in the scene and greatly improves detection performance. We empirically compare our approach against state-of-the-art methods for image translation and for fine-tuning on IR, and show that our HalluciDet improves detection accuracy in most cases by exploiting the privileged information encoded in a pre-trained RGB detector. Code: https://github.com/heitorrapela/HalluciDet.
Multi-Source Domain Adaptation for Object Detection with Prototype-based Mean Teacher
Atif Belal
Akhil Meethal
Francisco Perdigon Romero
Eric Granger
SCIseg: Automatic Segmentation of T2-weighted Intramedullary Lesions in Spinal Cord Injury
Enamundram Naga Karthik
Andrew C. Smith
Dario Pfyffer
Simon Schading-Sassenhausen
Lynn Farner
Kenneth A. Weber
Patrick Freund
Background: Quantitative MRI biomarkers in spinal cord injury (SCI) can help understand the extent of the focal injury. However, due to the … (see more)lack of automatic segmentation methods, these biomarkers are derived manually, which is a time-consuming process prone to intra- and inter-rater variability, thus limiting large multi-site studies and translation to clinical workflows. Purpose: To develop a deep learning tool for the automatic segmentation of T2-weighted hyperintense lesions and the spinal cord in SCI patients. Material and Methods: This retrospective study included a cohort of SCI patients from three sites enrolled between July 2002 and February 2023 who underwent clinical MRI examination. A deep learning model, SCIseg, was trained on T2-weighted images with heterogeneous image resolutions (isotropic, anisotropic), and orientations (axial, sagittal) acquired using scanners from different manufacturers (Siemens, Philips, GE) and different field strengths (1T, 1.5T, 3T) for the automatic segmentation of SCI lesions and the spinal cord. The proposed method was visually and quantitatively compared with other open-source baseline methods. Quantitative biomarkers (lesion volume, lesion length, and maximal axial damage ratio) computed from manual ground-truth lesion masks and automatic SCIseg predictions were correlated with clinical scores (pinprick, light touch, and lower extremity motor scores). A between-group comparison was performed using the Wilcoxon signed-rank test. Results: MRI data from 191 SCI patients (mean age, 48.1 years {+/-} 17.9 [SD]; 142 males) were used for training. Compared to existing methods, SCIseg achieved the best segmentation performance for both the cord and lesions and generalized well to both traumatic and non-traumatic SCI patients. SCIseg is open-source and accessible through the Spinal Cord Toolbox. Conclusion: Automatic segmentation of intramedullary lesions commonly seen in traumatic SCI replaces the tedious manual annotation process and enables the extraction of relevant lesion morphometrics in large cohorts. The proposed model generalizes across lesion etiologies (traumatic, ischemic), scanner manufacturers and heterogeneous image resolutions.
SCIseg: Automatic Segmentation of T2-weighted Intramedullary Lesions in Spinal Cord Injury
Enamundram Naga Karthik
Andrew C. Smith
Dario Pfyffer
Simon Schading-Sassenhausen
Lynn Farner
Kenneth A. Weber
Patrick Freund
Background: Quantitative MRI biomarkers in spinal cord injury (SCI) can help understand the extent of the focal injury. However, due to the … (see more)lack of automatic segmentation methods, these biomarkers are derived manually, which is a time-consuming process prone to intra- and inter-rater variability, thus limiting large multi-site studies and translation to clinical workflows. Purpose: To develop a deep learning tool for the automatic segmentation of T2-weighted hyperintense lesions and the spinal cord in SCI patients. Material and Methods: This retrospective study included a cohort of SCI patients from three sites enrolled between July 2002 and February 2023 who underwent clinical MRI examination. A deep learning model, SCIseg, was trained on T2-weighted images with heterogeneous image resolutions (isotropic, anisotropic), and orientations (axial, sagittal) acquired using scanners from different manufacturers (Siemens, Philips, GE) and different field strengths (1T, 1.5T, 3T) for the automatic segmentation of SCI lesions and the spinal cord. The proposed method was visually and quantitatively compared with other open-source baseline methods. Quantitative biomarkers (lesion volume, lesion length, and maximal axial damage ratio) computed from manual ground-truth lesion masks and automatic SCIseg predictions were correlated with clinical scores (pinprick, light touch, and lower extremity motor scores). A between-group comparison was performed using the Wilcoxon signed-rank test. Results: MRI data from 191 SCI patients (mean age, 48.1 years {+/-} 17.9 [SD]; 142 males) were used for training. Compared to existing methods, SCIseg achieved the best segmentation performance for both the cord and lesions and generalized well to both traumatic and non-traumatic SCI patients. SCIseg is open-source and accessible through the Spinal Cord Toolbox. Conclusion: Automatic segmentation of intramedullary lesions commonly seen in traumatic SCI replaces the tedious manual annotation process and enables the extraction of relevant lesion morphometrics in large cohorts. The proposed model generalizes across lesion etiologies (traumatic, ischemic), scanner manufacturers and heterogeneous image resolutions.
SCIseg: Automatic Segmentation of T2-weighted Intramedullary Lesions in Spinal Cord Injury
Enamundram Naga Karthik
Andrew C. Smith
Dario Pfyffer
Simon Schading-Sassenhausen
Lynn Farner
Kenneth A. Weber
Patrick Freund
Background: Quantitative MRI biomarkers in spinal cord injury (SCI) can help understand the extent of the focal injury. However, due to the … (see more)lack of automatic segmentation methods, these biomarkers are derived manually, which is a time-consuming process prone to intra- and inter-rater variability, thus limiting large multi-site studies and translation to clinical workflows. Purpose: To develop a deep learning tool for the automatic segmentation of T2-weighted hyperintense lesions and the spinal cord in SCI patients. Material and Methods: This retrospective study included a cohort of SCI patients from three sites enrolled between July 2002 and February 2023 who underwent clinical MRI examination. A deep learning model, SCIseg, was trained on T2-weighted images with heterogeneous image resolutions (isotropic, anisotropic), and orientations (axial, sagittal) acquired using scanners from different manufacturers (Siemens, Philips, GE) and different field strengths (1T, 1.5T, 3T) for the automatic segmentation of SCI lesions and the spinal cord. The proposed method was visually and quantitatively compared with other open-source baseline methods. Quantitative biomarkers (lesion volume, lesion length, and maximal axial damage ratio) computed from manual ground-truth lesion masks and automatic SCIseg predictions were correlated with clinical scores (pinprick, light touch, and lower extremity motor scores). A between-group comparison was performed using the Wilcoxon signed-rank test. Results: MRI data from 191 SCI patients (mean age, 48.1 years {+/-} 17.9 [SD]; 142 males) were used for training. Compared to existing methods, SCIseg achieved the best segmentation performance for both the cord and lesions and generalized well to both traumatic and non-traumatic SCI patients. SCIseg is open-source and accessible through the Spinal Cord Toolbox. Conclusion: Automatic segmentation of intramedullary lesions commonly seen in traumatic SCI replaces the tedious manual annotation process and enables the extraction of relevant lesion morphometrics in large cohorts. The proposed model generalizes across lesion etiologies (traumatic, ischemic), scanner manufacturers and heterogeneous image resolutions.
SCIseg: Automatic Segmentation of T2-weighted Hyperintense Lesions in Spinal Cord Injury
Enamundram Naga Karthik
Andrew C. Smith
Dario Pfyffer
Simon Schading-Sassenhausen
Lynn Farner
Kenneth A. Weber
Patrick Freund
Background: Quantitative MRI biomarkers in spinal cord injury (SCI) can help understand the extent of the focal injury. However, due to the … (see more)lack of automatic segmentation methods, these biomarkers are derived manually, which is a time-consuming process prone to intra- and inter-rater variability, thus limiting large multi-site studies and translation to clinical workflows. Purpose: To develop a deep learning tool for the automatic segmentation of T2-weighted hyperintense lesions and the spinal cord in SCI patients. Material and Methods: This retrospective study included a cohort of SCI patients from three sites enrolled between July 2002 and February 2023 who underwent clinical MRI examination. A deep learning model, SCIseg, was trained on T2-weighted images with heterogeneous image resolutions (isotropic, anisotropic), and orientations (axial, sagittal) acquired using scanners from different manufacturers (Siemens, Philips, GE) and different field strengths (1T, 1.5T, 3T) for the automatic segmentation of SCI lesions and the spinal cord. The proposed method was visually and quantitatively compared with other open-source baseline methods. Quantitative biomarkers (lesion volume, lesion length, and maximal axial damage ratio) computed from manual ground-truth lesion masks and automatic SCIseg predictions were correlated with clinical scores (pinprick, light touch, and lower extremity motor scores). A between-group comparison was performed using the Wilcoxon signed-rank test. Results: MRI data from 191 SCI patients (mean age, 48.1 years {+/-} 17.9 [SD]; 142 males) were used for training. Compared to existing methods, SCIseg achieved the best segmentation performance for both the cord and lesions and generalized well to both traumatic and non-traumatic SCI patients. SCIseg is open-source and accessible through the Spinal Cord Toolbox. Conclusion: Automatic segmentation of intramedullary lesions commonly seen in traumatic SCI replaces the tedious manual annotation process and enables the extraction of relevant lesion morphometrics in large cohorts. The proposed model generalizes across lesion etiologies (traumatic, ischemic), scanner manufacturers and heterogeneous image resolutions.
DIG In: Evaluating Disparities in Image Generations with Indicators for Geographic Diversity
Melissa Hall
Candace Ross
Adina Williams
Nicolas Carion
Michal Drozdzal
The unprecedented photorealistic results achieved by recent text-to-image generative systems and their increasing use as plug-and-play conte… (see more)nt creation solutions make it crucial to understand their potential biases. In this work, we introduce three indicators to evaluate the realism, diversity and prompt-generation consistency of text-to-image generative systems when prompted to generate objects from across the world. Our indicators complement qualitative analysis of the broader impact of such systems by enabling automatic and efficient benchmarking of geographic disparities, an important step towards building responsible visual content creation systems. We use our proposed indicators to analyze potential geographic biases in state-of-the-art visual content creation systems and find that: (1) models have less realism and diversity of generations when prompting for Africa and West Asia than Europe, (2) prompting with geographic information comes at a cost to prompt-consistency and diversity of generated images, and (3) models exhibit more region-level disparities for some objects than others. Perhaps most interestingly, our indicators suggest that progress in image generation quality has come at the cost of real-world geographic representation. Our comprehensive evaluation constitutes a crucial step towards ensuring a positive experience of visual content creation for everyone. Code is available at https://github.com/facebookresearch/DIG-In/.
More than one way to skin a dose volume: the impact of dose-surface map calculation approach on study reproducibility.
Haley Patrick
Uncertainty Resolution in Misinformation Detection
Adaptation Odyssey in LLMs: Why Does Additional Pretraining Sometimes Fail to Improve?
Matthias Bethge
Beyza Ermis
cCaugatay Yildiz
An Addendum to NeBula: Toward Extending Team CoSTAR’s Solution to Larger Scale Environments
Benjamin Morrell
Kyohei Otsu
Ali Agha
David D. Fan
Sung-Kyun Kim
Muhammad Fadhil Ginting
Xianmei Lei
Jeffrey Edlund
Seyed Fakoorian
Amanda Bouman
Fernando Chavez
Taeyeon Kim
Gustavo J. Correa
Maira Saboia
Angel Santamaria-Navarro
Brett Lopez
Boseong Kim
Chanyoung Jung
Mamoru Sobue
Oriana Claudia Peltzer … (see 69 more)
Joshua Ott
Robert Trybula
Thomas Touma
Marcel Kaufmann
Tiago Stegun Vaquero
Torkom Pailevanian
Matteo Palieri
Yun Chang
Andrzej Reinke
Matthew Anderson
Frederik E.T. Schöller
Patrick Spieler
Lillian Clark
Avak Archanian
Kenny Chen
Hovhannes Melikyan
Anushri Dixit
Harrison Delecki
Daniel Pastor
Barry Ridge
Nicolas Marchal
Jose Uribe
Sharmita Dey
Kamak Ebadi
Kyle Coble
Alexander Nikitas Dimopoulos
Vivek Thangavelu
Vivek Shankar Vardharajan
Nicholas Palomo
Antoni Rosinol
Arghya Chatterjee
Christoforos Kanellakis
Bjorn Lindqvist
Micah Corah
Kyle Strickland
Ryan Stonebraker
Michael Milano
Christopher E. Denniston
Sami Sahnoune
Thomas Claudet
Seungwook Lee
Gautam Salhotra
Edward Terry
Rithvik Musuku
Robin Schmid
Tony Tran
Ara Kourchians
Justin Schachter
Hector Azpurua
Levi Resende
Arash Kalantari
Jeremy Nash
Josh Lee
Christopher Patterson
Jen Blank
Kartik Patath
Yuki Kubo
Ryan Alimo
Yasin Almalioglu
Aaron Curtis
Jacqueline Sly
Tesla Wells
Nhut T. Ho
Mykel Kochenderfer
George Nikolakopoulos
David Shim
Luca Carlone
Joel Burdick
An Addendum to NeBula: Toward Extending Team CoSTAR’s Solution to Larger Scale Environments
Benjamin Morrell
Kyohei Otsu
Ali Agha
David D. Fan
Sung-Kyun Kim
Muhammad Fadhil Ginting
Xianmei Lei
Jeffrey Edlund
Seyed Fakoorian
Amanda Bouman
Fernando Chavez
Taeyeon Kim
Gustavo J. Correa
Maira Saboia
Angel Santamaria-Navarro
Brett Lopez
Boseong Kim
Chanyoung Jung
Mamoru Sobue
Oriana Claudia Peltzer … (see 69 more)
Joshua Ott
Robert Trybula
Thomas Touma
Marcel Kaufmann
Tiago Stegun Vaquero
Torkom Pailevanian
Matteo Palieri
Yun Chang
Andrzej Reinke
Matthew Anderson
Frederik E.T. Schöller
Patrick Spieler
Lillian Clark
Avak Archanian
Kenny Chen
Hovhannes Melikyan
Anushri Dixit
Harrison Delecki
Daniel Pastor
Barry Ridge
Nicolas Marchal
Jose Uribe
Sharmita Dey
Kamak Ebadi
Kyle Coble
Alexander Nikitas Dimopoulos
Vivek Thangavelu
Vivek Shankar Vardharajan
Nicholas Palomo
Antoni Rosinol
Arghya Chatterjee
Christoforos Kanellakis
Bjorn Lindqvist
Micah Corah
Kyle Strickland
Ryan Stonebraker
Michael Milano
Christopher E. Denniston
Sami Sahnoune
Thomas Claudet
Seungwook Lee
Gautam Salhotra
Edward Terry
Rithvik Musuku
Robin Schmid
Tony Tran
Ara Kourchians
Justin Schachter
Hector Azpurua
Levi Resende
Arash Kalantari
Jeremy Nash
Josh Lee
Christopher Patterson
Jen Blank
Kartik Patath
Yuki Kubo
Ryan Alimo
Yasin Almalioglu
Aaron Curtis
Jacqueline Sly
Tesla Wells
Nhut T. Ho
Mykel Kochenderfer
George Nikolakopoulos
David Shim
Luca Carlone
Joel Burdick