Publications

Spectra: Surprising Effectiveness of Pretraining Ternary Language Models at Scale
Tejas Pandey
Arnab Kumar Mondal
Aaryan Bhagat
Spectra: Surprising Effectiveness of Pretraining Ternary Language Models at Scale
Tejas Pandey
Aaryan Bhagat
Textualized and Feature-based Models for Compound Multimodal Emotion Recognition in the Wild
Nicolas Richet
Soufiane Belharbi
Muhammad Haseeb Aslam
Meike Emilie Schadt
Manuela Gonz'alez-Gonz'alez
Gustave Cortal
Alessandro Lameiras Koerich
Alain Finkel
Simon Bacon
Eric Granger
Systems for multimodal emotion recognition (ER) are commonly trained to extract features from different modalities (e.g., visual, audio, and… (see more) textual) that are combined to predict individual basic emotions. However, compound emotions often occur in real-world scenarios, and the uncertainty of recognizing such complex emotions over diverse modalities is challenging for feature-based models. As an alternative, emerging large language models (LLMs) like BERT and LLaMA can rely on explicit non-verbal cues that may be translated from different non-textual modalities (e.g., audio and visual) into text. Textualization of modalities augments data with emotional cues to help the LLM encode the interconnections between all modalities in a shared text space. In such text-based models, prior knowledge of ER tasks is leveraged to textualize relevant non-verbal cues such as audio tone from vocal expressions, and action unit intensity from facial expressions. Since the pre-trained weights are publicly available for many LLMs, training on large-scale datasets is unnecessary, allowing to fine-tune for downstream tasks such as compound ER (CER). This paper compares the potential of text- and feature-based approaches for compound multimodal ER in videos. Experiments were conducted on the challenging C-EXPR-DB dataset in the wild for CER, and contrasted with results on the MELD dataset for basic ER. Our results indicate that multimodal textualization provides lower accuracy than feature-based models on C-EXPR-DB, where text transcripts are captured in the wild. However, higher accuracy can be achieved when the video data has rich transcripts. Our code is available.
UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs
Many real world graphs are inherently dynamic, constantly evolving with node and edge additions. These graphs can be represented by temporal… (see more) graphs, either through a stream of edge events or a sequence of graph snapshots. Until now, the development of machine learning methods for both types has occurred largely in isolation, resulting in limited experimental comparison and theoretical crosspollination between the two. In this paper, we introduce Unified Temporal Graph (UTG), a framework that unifies snapshot-based and event-based machine learning models under a single umbrella, enabling models developed for one representation to be applied effectively to datasets of the other. We also propose a novel UTG training procedure to boost the performance of snapshot-based models in the streaming setting. We comprehensively evaluate both snapshot and event-based models across both types of temporal graphs on the temporal link prediction task. Our main findings are threefold: first, when combined with UTG training, snapshot-based models can perform competitively with event-based models such as TGN and GraphMixer even on event datasets. Second, snapshot-based models are at least an order of magnitude faster than most event-based models during inference. Third, while event-based methods such as NAT and DyGFormer outperforms snapshot-based methods on both types of temporal graphs, this is because they leverage joint neighborhood structural features thus emphasizing the potential to incorporate these features into snapshotbased models as well. These findings highlight the importance of comparing model architectures independent of the data format and suggest the potential of combining the efficiency of snapshot-based models with the performance of event-based models in the future.
When can transformers compositionally generalize in-context?
Seijin Kobayashi
Simon Schug
Yassir Akram
Florian Redhardt
Johannes Von Oswald
João Sacramento
Many tasks can be composed from a few independent components. This gives rise to a combinatorial explosion of possible tasks, only some of w… (see more)hich might be encountered during training. Under what circumstances can transformers compositionally generalize from a subset of tasks to all possible combinations of tasks that share similar components? Here we study a modular multitask setting that allows us to precisely control compositional structure in the data generation process. We present evidence that transformers learning in-context struggle to generalize compositionally on this task despite being in principle expressive enough to do so. Compositional generalization becomes possible only when introducing a bottleneck that enforces an explicit separation between task inference and task execution.
scSemiProfiler: Advancing Large-scale Single-cell Studies through Semi-profiling with Deep Generative Models and Active Learning
Jingtao Wang
Gregory Fonseca
Trust No Bot: Discovering Personal Disclosures in Human-LLM Conversations in the Wild
Niloofar Mireshghallah
Maria Antoniak
Yash More
Yejin Choi
Measuring personal disclosures made in human-chatbot interactions can provide a better understanding of users' AI literacy and facilitate pr… (see more)ivacy research for large language models (LLMs). We run an extensive, fine-grained analysis on the personal disclosures made by real users to commercial GPT models, investigating the leakage of personally identifiable and sensitive information. To understand the contexts in which users disclose to chatbots, we develop a taxonomy of tasks and sensitive topics, based on qualitative and quantitative analysis of naturally occurring conversations. We discuss these potential privacy harms and observe that: (1) personally identifiable information (PII) appears in unexpected contexts such as in translation or code editing (48% and 16% of the time, respectively) and (2) PII detection alone is insufficient to capture the sensitive topics that are common in human-chatbot interactions, such as detailed sexual preferences or specific drug use habits. We believe that these high disclosure rates are of significant importance for researchers and data curators, and we call for the design of appropriate nudging mechanisms to help users moderate their interactions.
Trust No Bot: Discovering Personal Disclosures in Human-LLM Conversations in the Wild
Niloofar Mireshghallah
Maria Antoniak
Yash More
Yejin Choi
Measuring personal disclosures made in human-chatbot interactions can provide a better understanding of users' AI literacy and facilitate pr… (see more)ivacy research for large language models (LLMs). We run an extensive, fine-grained analysis on the personal disclosures made by real users to commercial GPT models, investigating the leakage of personally identifiable and sensitive information. To understand the contexts in which users disclose to chatbots, we develop a taxonomy of tasks and sensitive topics, based on qualitative and quantitative analysis of naturally occurring conversations. We discuss these potential privacy harms and observe that: (1) personally identifiable information (PII) appears in unexpected contexts such as in translation or code editing (48% and 16% of the time, respectively) and (2) PII detection alone is insufficient to capture the sensitive topics that are common in human-chatbot interactions, such as detailed sexual preferences or specific drug use habits. We believe that these high disclosure rates are of significant importance for researchers and data curators, and we call for the design of appropriate nudging mechanisms to help users moderate their interactions.
Aperiodic activity as a central neural feature of hypnotic susceptibility outside of hypnosis
Mathieu Landry
Jason da Silva Castanheira
Catherine Boisvert
Floriane Rousseaux
Jérôme Sackur
Amir Raz
Philippe Richebé
David Ogez
Pierre Rainville
How well a person responds to hypnosis is a stable trait, which exhibits considerable inter-individual diversity across the general populati… (see more)on. Yet, its neural underpinning remains elusive. Here, we address this gap by combining EEG data, multivariate statistics, and machine learning in order to identify brain patterns that differentiate between individuals high and low in susceptibility to hypnosis. In particular, we computed the periodic and aperiodic components of the EEG power spectrum, as well as graph theoretical measures derived from functional connectivity, from data acquired at rest (pre-induction) and under hypnosis (post-induction). We found that the 1/f slope of the EEG spectrum at rest was the best predictor of hypnotic susceptibility. Our findings support the idea that hypnotic susceptibility is a trait linked to the balance of cortical excitation and inhibition at baseline and offers novel perspectives on the neural foundations of hypnotic susceptibility. Future work can explore the contribution of background 1/f activity as a novel target to distinguish the responsiveness of individuals to hypnosis at baseline in the clinic. Significance Statement Hypnotic phenomena reflect the ability to alter one’s subjective experiences based on targeted verbal suggestions. This ability varies greatly in the population. The brain correlates to explain this variability remain elusive. Addressing this gap, our study employs machine learning to predict hypnotic susceptibility. By recording electroencephalography (EEG) before and after a hypnotic induction and analyzing diverse neurophysiological features, we were able to determine that several features differentiate between high and low hypnotic susceptible individuals both at baseline and during hypnosis. Our analysis revealed that the paramount discriminative feature is non-oscillatory EEG activity before the induction—a new finding in the field. This outcome aligns with the idea that hypnotic susceptibility represents a latent trait observable through a plain five-minutes resting-state EEG.
A benchmark of individual auto-regressive models in a massive fMRI dataset
Fraçois Paugam
Basile Pinsard
Pierre Bellec
Dense functional magnetic resonance imaging datasets open new avenues to create auto-regressive models of brain activity. Individual idiosyn… (see more)crasies are obscured by group models, but can be captured by purely individual models given sufficient amounts of training data. In this study, we compared several deep and shallow individual models on the temporal auto-regression of BOLD time series recorded during a natural video watching task. The best performing models were then analyzed in terms of their data requirements and scaling, subject specificity and the space-time structure of their predicted dynamics. We found the Chebnets, a type of graph convolutional neural network, to be best suited for temporal BOLD auto-regression, closely followed by linear models. Chebnets demonstrated an increase in performance with increasing amounts of data, with no complete saturation at 9 h of training data. Good generalization to other kinds of video stimuli and to resting state data marked the Chebnets’ ability to capture intrinsic brain dynamics rather than only stimulus-specific autocorrelation patterns. Significant subject specificity was found at short prediction time lags. The Chebnets were found to capture lower frequencies at longer prediction time lags, and the spatial correlations in predicted dynamics were found to match traditional functional connectivity networks. Overall, these results demonstrate that large individual fMRI datasets can be used to efficiently train purely individual auto-regressive models of brain activity, and that massive amounts of individual data are required to do so. The excellent performance of the Chebnets likely reflects their ability to combine spatial and temporal interactions on large time scales at a low complexity cost. The non-linearities of the models did not appear as a key advantage. In fact, surprisingly, linear versions of the Chebnets appeared to outperform the original nonlinear ones. Individual temporal auto-regressive models have the potential to improve the predictability of the BOLD signal. This study is based on a massive, publicly-available dataset, which can serve for future benchmarks of individual auto-regressive modeling.
Benchmarking Vision Language Models for Cultural Understanding
Sjoerd van Steenkiste
Lisa Anne Hendricks
Karolina Stanczak
Foundation models and vision-language pre-training have notably advanced Vision Language Models (VLMs), enabling multimodal processing of vi… (see more)sual and linguistic data. However, their performance has been typically assessed on general scene understanding - recognizing objects, attributes, and actions - rather than cultural comprehension. This study introduces CulturalVQA, a visual question-answering benchmark aimed at assessing VLM’s geo-diverse cultural understanding. We curate a diverse collection of 2,378 image-question pairs with 1-5 answers per question representing cultures from 11 countries across 5 continents. The questions probe understanding of various facets of culture such as clothing, food, drinks, rituals, and traditions. Benchmarking VLMs on CulturalVQA, including GPT-4V and Gemini, reveals disparity in their level of cultural understanding across regions, with strong cultural understanding capabilities for North America while significantly weaker capabilities for Africa. We observe disparity in their performance across cultural facets too, with clothing, rituals, and traditions seeing higher performances than food and drink. These disparities help us identify areas where VLMs lack cultural understanding and demonstrate the potential of CulturalVQA as a comprehensive evaluation set for gauging VLM progress in understanding diverse cultures.
DROID: A Large-Scale In-The-Wild Robot Manipulation Dataset
Alexander Khazatsky
Karl Pertsch
Suraj Nair
Ashwin Balakrishna
Sudeep Dasari
Siddharth Karamcheti
Soroush Nasiriany
Mohan Kumar Srirama
Lawrence Yunliang Chen
Peter David Fagan
Joey Hejna
Masha Itkina
Marion Lepert
Yecheng Jason Ma
Ye Ma
Patrick Tree Miller
Jimmy Wu
Suneel Belkhale
Shivin Dass … (see 82 more)
Huy Ha
Arhan Jain
Abraham Lee
Youngwoon Lee
Marius Memmel
Sungjae Park
Ilija Radosavovic
Kaiyuan Wang
Kevin Black
Cheng Chi
Kyle Beltran Hatch
Shan Lin
Jingpei Lu
Jean Mercat
Abdul Rehman
Pannag R Sanketi
Cody Simpson
Quan Vuong
Homer Rich Walke
Blake Wulfe
Ted Xiao
Jonathan Heewon Yang
Arefeh Yavary
Tony Z. Zhao
Christopher Agia
Rohan Baijal
Mateo Guaman Castro
Daphne Chen
Qiuyu Chen
Trinity Chung
Jaimyn Drake
Ethan Paul Foster
Jensen Gao
David Antonio Herrera
Minho Heo
Kyle Hsu
Jiaheng Hu
Muhammad Zubair Irshad
Donovon Jackson
Charlotte Le
Xinyu Lin
Yunshuang Li
K. Lin
Roy Lin
Zehan Ma
Abhiram Maddukuri
Suvir Mirchandani
Daniel Morton
Tony Khuong Nguyen
Abigail O'Neill
Rosario Scalise
Derick Seale
Victor Son
Stephen Tian
Emi Tran
Andrew E. Wang
Yilin Wu
Annie Xie
Jingyun Yang
Patrick Yin
Yunchu Zhang
Osbert Bastani
Jeannette Bohg
Ken Goldberg
Abhishek Gupta
Dinesh Jayaraman
Joseph J Lim
Jitendra Malik
Roberto Martín-Martín
Subramanian Ramamoorthy
Dorsa Sadigh
Shuran Song
Jiajun Wu
Michael C. Yip
Yuke Zhu
Thomas Kollar
Sergey Levine
Chelsea Finn
The creation of large, diverse, high-quality robot manipulation datasets is an important stepping stone on the path toward more capable and … (see more)robust robotic manipulation policies. However, creating such datasets is challenging: collecting robot manipulation data in diverse environments poses logistical and safety challenges and requires substantial investments in hardware and human labour. As a result, even the most general robot manipulation policies today are mostly trained on data collected in a small number of environments with limited scene and task diversity. In this work, we introduce DROID (Distributed Robot Interaction Dataset), a diverse robot manipulation dataset with 76k demonstration trajectories or 350 hours of interaction data, collected across 564 scenes and 84 tasks by 50 data collectors in North America, Asia, and Europe over the course of 12 months. We demonstrate that training with DROID leads to policies with higher performance and improved generalization ability. We open source the full dataset, policy learning code, and a detailed guide for reproducing our robot hardware setup.