Computing Power and the Governance of Artificial Intelligence
Girish Sastry
Lennart Heim
Haydn Belfield
Markus Anderljung
Miles Brundage
Julian Hazell
Cullen C. O'keefe
Gillian K. Hadfield
Richard Ngo
Konstantin Pilz
George Gor
Emma Bluemke
Sarah Shoker
Janet Egan
Robert F. Trager
Shahar Avin
Adrian Weller
Diane Coyle
Computing power, or"compute,"is crucial for the development and deployment of artificial intelligence (AI) capabilities. As a result, govern… (see more)ments and companies have started to leverage compute as a means to govern AI. For example, governments are investing in domestic compute capacity, controlling the flow of compute to competing countries, and subsidizing compute access to certain sectors. However, these efforts only scratch the surface of how compute can be used to govern AI development and deployment. Relative to other key inputs to AI (data and algorithms), AI-relevant compute is a particularly effective point of intervention: it is detectable, excludable, and quantifiable, and is produced via an extremely concentrated supply chain. These characteristics, alongside the singular importance of compute for cutting-edge AI models, suggest that governing compute can contribute to achieving common policy objectives, such as ensuring the safety and beneficial use of AI. More precisely, policymakers could use compute to facilitate regulatory visibility of AI, allocate resources to promote beneficial outcomes, and enforce restrictions against irresponsible or malicious AI development and usage. However, while compute-based policies and technologies have the potential to assist in these areas, there is significant variation in their readiness for implementation. Some ideas are currently being piloted, while others are hindered by the need for fundamental research. Furthermore, naive or poorly scoped approaches to compute governance carry significant risks in areas like privacy, economic impacts, and centralization of power. We end by suggesting guardrails to minimize these risks from compute governance.
Mixtures of Experts Unlock Parameter Scaling for Deep RL
Johan Samir Obando Ceron
Ghada Sokar
Timon Willi
Clare Lyle
Jesse Farebrother
Jakob Nicolaus Foerster
Mixtures of Experts Unlock Parameter Scaling for Deep RL
Johan Samir Obando Ceron
Ghada Sokar
Timon Willi
Clare Lyle
Jesse Farebrother
Jakob Nicolaus Foerster
The recent rapid progress in (self) supervised learning models is in large part predicted by empirical scaling laws: a model's performance s… (see more)cales proportionally to its size. Analogous scaling laws remain elusive for reinforcement learning domains, however, where increasing the parameter count of a model often hurts its final performance. In this paper, we demonstrate that incorporating Mixture-of-Expert (MoE) modules, and in particular Soft MoEs (Puigcerver et al., 2023), into value-based networks results in more parameter-scalable models, evidenced by substantial performance increases across a variety of training regimes and model sizes. This work thus provides strong empirical evidence towards developing scaling laws for reinforcement learning.
Mixtures of Experts Unlock Parameter Scaling for Deep RL
Johan Samir Obando Ceron
Ghada Sokar
Timon Willi
Clare Lyle
Jesse Farebrother
Jakob Nicolaus Foerster
The recent rapid progress in (self) supervised learning models is in large part predicted by empirical scaling laws: a model's performance s… (see more)cales proportionally to its size. Analogous scaling laws remain elusive for reinforcement learning domains, however, where increasing the parameter count of a model often hurts its final performance. In this paper, we demonstrate that incorporating Mixture-of-Expert (MoE) modules, and in particular Soft MoEs (Puigcerver et al., 2023), into value-based networks results in more parameter-scalable models, evidenced by substantial performance increases across a variety of training regimes and model sizes. This work thus provides strong empirical evidence towards developing scaling laws for reinforcement learning.
Model approximation in MDPs with unbounded per-step cost
Berk Bozkurt
Ashutosh Nayyar
Yi Ouyang
We consider the problem of designing a control policy for an infinite-horizon discounted cost Markov decision process …
Regional Adaptive Metropolis Light Transport
Hisanari Otsu
Killian Herveau
Johannes Hanika
Carsten Dachsbacher
The design of the proposal distributions, and most notably the kernel parameters, are crucial for the performance of Markov chain Monte Carl… (see more)o (MCMC) rendering. A poor selection of parameters can increase the correlation of the Markov chain and result in bad rendering performance. We approach this problem by a novel path perturbation strategy for online-learning of state-dependent kernel parameters. We base our approach on the theoretical framework of regional adaptive MCMC which enables the adaptation of parameters depending on the region of the state space which contains the current sample, and on information collected from previous samples. For this, we define a partitioning of the path space on a low-dimensional canonical space to capture the characteristics of paths, with a focus on path segments closer to the sensor. Fast convergence is achieved by adaptive refinement of the partitions. Exemplarily, we present two novel regional adaptive path perturbation techniques akin to lens and multi-chain perturbations. Our approach can easily be used on top of existing path space MLT methods to improve rendering efficiency, while being agnostic to the initial choice of kernel parameters.
Antagonistic AI
Alice Cai
Elena L. Glassman
The vast majority of discourse around AI development assumes that subservient,"moral"models aligned with"human values"are universally benefi… (see more)cial -- in short, that good AI is sycophantic AI. We explore the shadow of the sycophantic paradigm, a design space we term antagonistic AI: AI systems that are disagreeable, rude, interrupting, confrontational, challenging, etc. -- embedding opposite behaviors or values. Far from being"bad"or"immoral,"we consider whether antagonistic AI systems may sometimes have benefits to users, such as forcing users to confront their assumptions, build resilience, or develop healthier relational boundaries. Drawing from formative explorations and a speculative design workshop where participants designed fictional AI technologies that employ antagonism, we lay out a design space for antagonistic AI, articulating potential benefits, design techniques, and methods of embedding antagonistic elements into user experience. Finally, we discuss the many ethical challenges of this space and identify three dimensions for the responsible design of antagonistic AI -- consent, context, and framing.
Antagonistic AI
Alice Cai
Elena L. Glassman
Antagonistic AI
Alice Cai
Elena L. Glassman
Antagonistic AI
Alice Cai
Elena L. Glassman
The vast majority of discourse around AI development assumes that subservient,"moral"models aligned with"human values"are universally benefi… (see more)cial -- in short, that good AI is sycophantic AI. We explore the shadow of the sycophantic paradigm, a design space we term antagonistic AI: AI systems that are disagreeable, rude, interrupting, confrontational, challenging, etc. -- embedding opposite behaviors or values. Far from being"bad"or"immoral,"we consider whether antagonistic AI systems may sometimes have benefits to users, such as forcing users to confront their assumptions, build resilience, or develop healthier relational boundaries. Drawing from formative explorations and a speculative design workshop where participants designed fictional AI technologies that employ antagonism, we lay out a design space for antagonistic AI, articulating potential benefits, design techniques, and methods of embedding antagonistic elements into user experience. Finally, we discuss the many ethical challenges of this space and identify three dimensions for the responsible design of antagonistic AI -- consent, context, and framing.
An enhanced wideband tracking method for characteristic modes
Chao Huang
Chenjiang Guo
Xia Ma
Yi Yuan
An enhanced wideband tracking method for characteristic modes (CMs) is investigated in this paper. The method consists of three stages, and … (see more)its core tracking stage (CTS) is based on a classical eigenvector correlation-based algorithm. To decrease the tracking time and eliminate the crossing avoidance (CRA), we append a commonly used eigenvalue filter (EF) as the preprocessing stage and a novel postprocessing stage to the CTS. The proposed postprocessing stage can identify all CRA mode pairs by analyzing their trajectory and correlation characteristics. Subsequently, it can predict corresponding CRA frequencies and correct problematic qualities rapidly. Considering potential variations in eigenvector numbers at consecutive frequency samples caused by the EF, a new execution condition for the adaptive frequency adjustment in the CTS is introduced. Finally, CMs of a conductor plate and a fractal structure are investigated to demonstrate the performance of the proposed method, and the obtained results are discussed.
Leveraging Function Space Aggregation for Federated Learning at Scale
Nikita Dhawan
Nicole Elyse Mitchell
Zachary Charles
Zachary Garrett
The federated learning paradigm has motivated the development of methods for aggregating multiple client updates into a global server model,… (see more) without sharing client data. Many federated learning algorithms, including the canonical Federated Averaging (FedAvg), take a direct (possibly weighted) average of the client parameter updates, motivated by results in distributed optimization. In this work, we adopt a function space perspective and propose a new algorithm, FedFish, that aggregates local approximations to the functions learned by clients, using an estimate based on their Fisher information. We evaluate FedFish on realistic, large-scale cross-device benchmarks. While the performance of FedAvg can suffer as client models drift further apart, we demonstrate that FedFish is more robust to longer local training. Our evaluation across several settings in image and language benchmarks shows that FedFish outperforms FedAvg as local training epochs increase. Further, FedFish results in global networks that are more amenable to efficient personalization via local fine-tuning on the same or shifted data distributions. For instance, federated pretraining on the C4 dataset, followed by few-shot personalization on Stack Overflow, results in a 7% improvement in next-token prediction by FedFish over FedAvg.