We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
CKGConv: General Graph Convolution with Continuous Kernels
The existing definitions of graph convolution, either from spatial or spectral perspectives, are inflexible and not unified. Defining a gene… (see more)ral convolution operator in the graph domain is challenging due to the lack of canonical coordinates, the presence of irregular structures, and the properties of graph symmetries. In this work, we propose a novel graph convolution framework by parameterizing the kernels as continuous functions of pseudo-coordinates derived via graph positional encoding. We name this Continuous Kernel Graph Convolution (CKGConv). Theoretically, we demonstrate that CKGConv is flexible and expressive. CKGConv encompasses many existing graph convolutions, and exhibits the same expressiveness as graph transformers in terms of distinguishing non-isomorphic graphs. Empirically, we show that CKGConv-based Networks outperform existing graph convolutional networks and perform comparably to the best graph transformers across a variety of graph datasets.
This paper contributes a new approach for distributional reinforcement learning which elucidates
a clean separation of transition structure … (see more)and reward in the learning process. Analogous to how
the successor representation (SR) describes the expected consequences of behaving according to a
given policy, our distributional successor measure
(SM) describes the distributional consequences of
this behaviour. We formulate the distributional
SM as a distribution over distributions and provide theory connecting it with distributional and
model-based reinforcement learning. Moreover,
we propose an algorithm that learns the distributional SM from data by minimizing a two-level
maximum mean discrepancy. Key to our method
are a number of algorithmic techniques that are
independently valuable for learning generative
models of state. As an illustration of the usefulness of the distributional SM, we show that it
enables zero-shot risk-sensitive policy evaluation
in a way that was not previously possible.
Establishing an accurate model of dynamic systems poses a challenge for complex industrial processes. Due to the ability to handle complex t… (see more)asks, modular neural networks (MNN) have been widely applied to industrial process modeling. However, the phenomenon of domain drift caused by operating conditions may lead to a cold start of the model, which affects the performance of MNN. For this reason, a multisource transfer learning-based MNN (MSTL-MNN) is proposed in this study. First, the knowledge-driven transfer learning process is performed with domain similarity evaluation, knowledge extraction, and fusion, aiming to form an initial subnetwork in the target domain. Then, the positive transfer process of effective knowledge can avoid the cold start problem of MNN. Second, during the data-driven fine-tuning process, a regularized self-organizing long short-term memory algorithm is designed to fine-tune the structure and parameters of the initial subnetwork, which can improve the prediction performance of MNN. Meanwhile, relevant theoretical analysis is given to ensure the feasibility of MSTL-MNN. Finally, the effectiveness of the proposed method is confirmed by two benchmark simulations and a real industrial dataset of a municipal solid waste incineration process. Experimental results demonstrate the merits of MSTL-MNN for industrial applications.
2024-05-01
IEEE Transactions on Industrial Informatics (published)