We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
A neuronal least-action principle for real-time learning in cortical circuits
One of the most fundamental laws of physics is the principle of least action. Motivated by its predictive power, we introduce a neuronal lea… (see more)st-action principle for cortical processing of sensory streams to produce appropriate behavioural outputs in real time. The principle postulates that the voltage dynamics of cortical pyramidal neurons prospectively minimizes the local somato-dendritic mismatch error within individual neurons. For output neurons, the principle implies minimizing an instantaneous behavioural error. For deep network neurons, it implies the prospective firing to overcome integration delays and correct for possible output errors right in time. The neuron-specific errors are extracted in the apical dendrites of pyramidal neurons through a cortical microcircuit that tries to explain away the feedback from the periphery, and correct the trajectory on the fly. Any motor output is in a moving equilibrium with the sensory input and the motor feedback during the ongoing sensory-motor transform. Online synaptic plasticity reduces the somato-dendritic mismatch error within each cortical neuron and performs gradient descent on the output cost at any moment in time. The neuronal least-action principle offers an axiomatic framework to derive local neuronal and synaptic laws for global real-time computation and learning in the brain.
One of the most fundamental laws of physics is the principle of least action. Motivated by its predictive power, we introduce a neuronal lea… (see more)st-action principle for cortical processing of sensory streams to produce appropriate behavioural outputs in real time. The principle postulates that the voltage dynamics of cortical pyramidal neurons prospectively minimizes the local somato-dendritic mismatch error within individual neurons. For output neurons, the principle implies minimizing an instantaneous behavioural error. For deep network neurons, it implies the prospective firing to overcome integration delays and correct for possible output errors right in time. The neuron-specific errors are extracted in the apical dendrites of pyramidal neurons through a cortical microcircuit that tries to explain away the feedback from the periphery, and correct the trajectory on the fly. Any motor output is in a moving equilibrium with the sensory input and the motor feedback during the ongoing sensory-motor transform. Online synaptic plasticity reduces the somato-dendritic mismatch error within each cortical neuron and performs gradient descent on the output cost at any moment in time. The neuronal least-action principle offers an axiomatic framework to derive local neuronal and synaptic laws for global real-time computation and learning in the brain.
Spurious correlations are a major source of errors for machine learning models, in particular when aiming for group-level fairness. It has b… (see more)een recently shown that a powerful approach to combat spurious correlations is to re-train the last layer on a balanced validation dataset, isolating robust features for the predictor. However, key attributes can sometimes be discarded by neural networks towards the last layer. In this work, we thus consider retraining a classifier on a set of features derived from all layers. We utilize a recently proposed feature selection strategy to select unbiased features from all the layers. We observe this approach gives significant improvements in worst-group accuracy on several standard benchmarks.
Public protein sequence databases contain samples from the fitness landscape explored by nature. Protein language models (pLMs) pre-trained … (see more)on these sequences aim to capture this landscape for tasks like property prediction and protein design. Following the same trend as in natural language processing, pLMs have continuously been scaled up. However, the premise that scale leads to better performance assumes that source databases provide accurate representation of the underlying fitness landscape, which is likely false. By developing an efficient codebase, designing a modern architecture, and addressing data quality concerns such as sample bias, we introduce AMPLIFY, a best-in-class pLM that is orders of magnitude less expensive to train and deploy than previous models. Furthermore, to support the scientific community and democratize the training of pLMs, we have open-sourced AMPLIFY’s pre-training codebase, data, and model checkpoints.
We introduce a self supervised framework for learning representations in the context of dictionary learning. We cast the problem as a kernel… (see more) matching task between the input and the representation space, with constraints on the latent kernel. By adjusting these constraints, we demonstrate how the framework can adapt to different learning objectives. We then formulate a novel Alternate Direction Method of Multipli-ers (ADMM) based algorithm to solve the optimization problem and connect the dynamics to classical alternate minimization techniques. This approach offers a unique way of learning representations with kernel constraints, that enable us implicitly learn a generative map for the data from the learned representations which can have broad applications in representation learning tasks both in machine learning and neuro-science.
2024-09-22
International Workshop on Machine Learning for Signal Processing (published)
We introduce a self supervised framework for learning representations in the context of dictionary learning. We cast the problem as a kernel… (see more) matching task between the input and the representation space, with constraints on the latent kernel. By adjusting these constraints, we demonstrate how the framework can adapt to different learning objectives. We then formulate a novel Alternate Direction Method of Multipli-ers (ADMM) based algorithm to solve the optimization problem and connect the dynamics to classical alternate minimization techniques. This approach offers a unique way of learning representations with kernel constraints, that enable us implicitly learn a generative map for the data from the learned representations which can have broad applications in representation learning tasks both in machine learning and neuro-science.
2024-09-22
International Workshop on Machine Learning for Signal Processing (published)
In audio and speech processing, tasks usually focus on either the audio or speech modality, even when both sounds and human speech are prese… (see more)nt in the same audio clip. Recent Auditory Large Language Models (ALLMs) have made it possible to process audio and speech simultaneously within a single model, leading to further considerations of joint audio-speech tasks. In this paper, we establish a novel benchmark to investigate how well ALLMs can perform joint audio-speech processing. Specifically, we introduce Joint Audio-Speech Co-Reasoning (JASCO), a novel task that unifies audio and speech processing, strictly requiring co-reasoning across both modalities. We also release a scene-reasoning dataset called"What Are They Doing". Additionally, we provide deeper insights into the models' behaviors by analyzing their dependence on each modality.
We present a comprehensive explainability dashboard designed for in-game chat toxicity. This dashboard integrates various existing explainab… (see more)le AI (XAI) techniques, including token importance analysis, model output visualization, and attribution to the training dataset. It also provides insights through the closest positive and negative examples, facilitating a deeper understanding and potential correction of the training data. Additionally, the dashboard includes word sense analysis—particularly useful for new moderators—and offers free-text explanations for both positive and negative predictions. This multi-faceted approach enhances the interpretability and transparency of toxicity detection models.