Portrait of Olivier Bélanger is unavailable

Olivier Bélanger

Master's Research - Polytechnique Montréal
Co-supervisor

Publications

Quality of Service-Constrained Online Routing in High Throughput Satellites
Olivier B'elanger
Olfa Ben Yahia
St'ephane Martel
Gunes Karabulut-kurt
High throughput satellites (HTSs) outpace traditional satellites due to their multi-beam transmission. The rise of low Earth orbit mega cons… (see more)tellations amplifies HTS data rate demands to terabits/second with acceptable latency. This surge in data rate necessitates multiple modems, often exceeding single device capabilities. Consequently, satellites employ several processors, forming a complex packet-switch network. This can lead to potential internal congestion and challenges in adhering to strict quality of service (QoS) constraints. While significant research exists on constellation-level routing, a literature gap remains on the internal routing within a single HTS. The intricacy of this internal network architecture presents a significant challenge to achieve high data rates. This paper introduces an online optimal flow allocation and scheduling method for HTSs. The problem is presented as a multi-commodity flow instance with different priority data streams. An initial full time horizon model is proposed as a benchmark. We apply a model predictive control (MPC) approach to enable adaptive routing based on current information and the forecast within the prediction time horizon while allowing for deviation of the latter. Importantly, MPC is inherently suited to handle uncertainty in incoming flows. Our approach minimizes the packet loss by optimally and adaptively managing the priority queue schedulers and flow exchanges between satellite processing modules. Central to our method is a routing model focusing on optimal priority scheduling to enhance data rates and maintain QoS. The model's stages are critically evaluated, and results are compared to traditional methods via numerical simulations. Through simulations, our method demonstrates performance nearly on par with the hindsight optimum, showcasing its efficiency and adaptability in addressing satellite communication challenges.
Evolution of High Throughput Satellite Systems: Vision, Requirements, and Key Technologies
Olfa Ben Yahia
Zineb Garroussi
Olivier B'elanger
Brunilde Sansò
J. Frigon
St'ephane Martel
G. Kurt
High throughput satellites (HTS), with their digital payload technology, are expected to play a key role as enablers of the upcoming 6G netw… (see more)orks. HTS are mainly designed to provide higher data rates and capacities. Fueled by technological advancements including beamforming, advanced modulation techniques, reconfigurable phased array technologies, and electronically steerable antennas, HTS have emerged as a fundamental component for future network generation. This paper offers a comprehensive state-of-the-art of HTS systems, with a focus on standardization, patents, channel multiple access techniques, routing, load balancing, and the role of software-defined networking (SDN). In addition, we provide a vision for next-satellite systems that we named as extremely-HTS (EHTS) toward autonomous satellites supported by the main requirements and key technologies expected for these systems. The EHTS system will be designed such that it maximizes spectrum reuse and data rates, and flexibly steers the capacity to satisfy user demand. We introduce a novel architecture for future regenerative payloads while summarizing the challenges imposed by this architecture.