Portrait of Laya Rafiee Sevyeri is unavailable

Laya Rafiee Sevyeri

Postdoctorate - McGill University
Supervisor

Publications

Transparent Anomaly Detection via Concept-based Explanations
Laya Rafiee Sevyeri
Ivaxi Sheth
Farhood Farahnak
Source-free Domain Adaptation Requires Penalized Diversity
Laya Rafiee Sevyeri
Ivaxi Sheth
Farhood Farahnak
Alexandre See
Thomas Fevens
Mohammad Havaei
While neural networks are capable of achieving human-like performance in many tasks such as image classification, the impressive performance… (see more) of each model is limited to its own dataset. Source-free domain adaptation (SFDA) was introduced to address knowledge transfer between different domains in the absence of source data, thus, increasing data privacy. Diversity in representation space can be vital to a model`s adaptability in varied and difficult domains. In unsupervised SFDA, the diversity is limited to learning a single hypothesis on the source or learning multiple hypotheses with a shared feature extractor. Motivated by the improved predictive performance of ensembles, we propose a novel unsupervised SFDA algorithm that promotes representational diversity through the use of separate feature extractors with Distinct Backbone Architectures (DBA). Although diversity in feature space is increased, the unconstrained mutual information (MI) maximization may potentially introduce amplification of weak hypotheses. Thus we introduce the Weak Hypothesis Penalization (WHP) regularizer as a mitigation strategy. Our work proposes Penalized Diversity (PD) where the synergy of DBA and WHP is applied to unsupervised source-free domain adaptation for covariate shift. In addition, PD is augmented with a weighted MI maximization objective for label distribution shift. Empirical results on natural, synthetic, and medical domains demonstrate the effectiveness of PD under different distributional shifts.
Learning from uncertain concepts via test time interventions
Ivaxi Sheth
Aamer Abdul Rahman
Laya Rafiee Sevyeri
Mohammad Havaei
With neural networks applied to safety-critical applications, it has become increasingly important to understand the defining features of de… (see more)cision-making. Therefore, the need to uncover the black boxes to rational representational space of these neural networks is apparent. Concept bottleneck model (CBM) encourages interpretability by predicting human-understandable concepts. They predict concepts from input images and then labels from concepts. Test time intervention, a salient feature of CBM, allows for human-model interactions. However, these interactions are prone to information leakage and can often be ineffective inappropriate communication with humans. We propose a novel uncertainty based strategy, \emph{SIUL: Single Interventional Uncertainty Learning} to select the interventions. Additionally, we empirically test the robustness of CBM and the effect of SIUL interventions under adversarial attack and distributional shift. Using SIUL, we observe that the interventions suggested lead to meaningful corrections along with mitigation of concept leakage. Extensive experiments on three vision datasets along with a histopathology dataset validate the effectiveness of our interventional learning.