Portrait of Jarrid Rector-Brooks is unavailable

Jarrid Rector-Brooks

PhD - Université de Montréal
Supervisor

Publications

Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
Joey Bose
Sarthak Mittal
Pablo Lemos
Cheng-Hao Liu
Marcin Sendera
Nikolay Malkin
Alexander Tong
Efficiently generating statistically independent samples from an unnormalized probability distribution, such as equilibrium samples of many-… (see more)body systems, is a foundational problem in science. In this paper, we propose Iterated Denoising Energy Matching (iDEM), an iterative algorithm that uses a novel stochastic score matching objective leveraging solely the energy function and its gradient---and no data samples---to train a diffusion-based sampler. Specifically, iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our stochastic matching objective to further improve the sampler. iDEM is scalable to high dimensions as the inner matching objective, is *simulation-free*, and requires no MCMC samples. Moreover, by leveraging the fast mode mixing behavior of diffusion, iDEM smooths out the energy landscape enabling efficient exploration and learning of an amortized sampler. We evaluate iDEM on a suite of tasks ranging from standard synthetic energy functions to invariant
Improving and Generalizing Flow-Based Generative Models with Minibatch Optimal Transport
Alexander Tong
Nikolay Malkin
Guillaume Huguet
Yanlei Zhang
Jarrid Rector-Brooks
Kilian FATRAS
Continuous normalizing flows (CNFs) are an attractive generative modeling technique, but they have been held back by limitations in their si… (see more)mulation-based maximum likelihood training. We introduce the generalized \textit{conditional flow matching} (CFM) technique, a family of simulation-free training objectives for CNFs. CFM features a stable regression objective like that used to train the stochastic flow in diffusion models but enjoys the efficient inference of deterministic flow models. In contrast to both diffusion models and prior CNF training algorithms, CFM does not require the source distribution to be Gaussian or require evaluation of its density. A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference, as evaluated in our experiments. Furthermore, OT-CFM is the first method to compute dynamic OT in a simulation-free way. Training CNFs with CFM improves results on a variety of conditional and unconditional generation tasks, such as inferring single cell dynamics, unsupervised image translation, and Schrödinger bridge inference.
Integrating Generative and Experimental Platforms or Biomolecular Design
Cheng-Hao Liu
Jarrid Rector-Brooks
Jason Yim
Soojung Yang
Sidney Lisanza
Francesca-Zhoufan Li
Pranam Chatterjee
Tommi Jaakkola
Regina Barzilay
David Baker
Frances H. Arnold
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
Joey Bose
Sarthak Mittal
Pablo Lemos
Cheng-Hao Liu
Marcin Sendera
Nikolay Malkin
Alexander Tong
Efficiently generating statistically independent samples from an unnormalized probability distribution, such as equilibrium samples of many-… (see more)body systems, is a foundational problem in science. In this paper, we propose Iterated Denoising Energy Matching (iDEM), an iterative algorithm that uses a novel stochastic score matching objective leveraging solely the energy function and its gradient -- and no data samples -- to train a diffusion-based sampler. Specifically, iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our stochastic matching objective to further improve the sampler. iDEM is scalable to high dimensions as the inner matching objective, is simulation-free, and requires no MCMC samples. Moreover, by leveraging the fast mode mixing behavior of diffusion, iDEM smooths out the energy landscape enabling efficient exploration and learning of an amortized sampler. We evaluate iDEM on a suite of tasks ranging from standard synthetic energy functions to invariant
On diffusion models for amortized inference: Benchmarking and improving stochastic control and sampling
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Nikolay Malkin
We study the problem of training diffusion models to sample from a distribution with a given unnormalized density or energy function. We ben… (see more)chmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods (continuous generative flow networks). Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work. We also propose a novel exploration strategy for off-policy methods, based on local search in the target space with the use of a replay buffer, and show that it improves the quality of samples on a variety of target distributions. Our code for the sampling methods and benchmarks studied is made public at https://github.com/GFNOrg/gfn-diffusion as a base for future work on diffusion models for amortized inference.
Learning Conditional Policies for Crystal Design Using Offline Reinforcement Learning
Prashant Govindarajan
Santiago Miret
Jarrid Rector-Brooks
Mariano Phielipp
Janarthanan Rajendran
Navigating through the exponentially large chemical space to search for desirable materials is an extremely challenging task in material dis… (see more)covery. Recent developments in generative and geometric deep learning have shown...
RECOVER identifies synergistic drug combinations in vitro through sequential model optimization
Paul Bertin
Jarrid Rector-Brooks
Deepak Sharma
Thomas Gaudelet
Andrew Anighoro
Torsten Gross
Francisco Martínez-Peña
Eileen L. Tang
M.S. Suraj
Cristian Regep
Jeremy B.R. Hayter
Maksym Korablyov
Nicholas Valiante
Almer van der Sloot
Mike Tyers
Charles E.S. Roberts
Michael M. Bronstein
Luke L. Lairson
Jake P. Taylor-King
Thompson Sampling for Improved Exploration in GFlowNets
Jarrid Rector-Brooks
Kanika Madan
Moksh J. Jain
Maksym Korablyov
Cheng-Hao Liu
Nikolay Malkin
Generative flow networks (GFlowNets) are amortized variational inference algorithms that treat sampling from a distribution over composition… (see more)al objects as a sequential decision-making problem with a learnable action policy. Unlike other algorithms for hierarchical sampling that optimize a variational bound, GFlowNet algorithms can stably run off-policy, which can be advantageous for discovering modes of the target distribution. Despite this flexibility in the choice of behaviour policy, the optimal way of efficiently selecting trajectories for training has not yet been systematically explored. In this paper, we view the choice of trajectories for training as an active learning problem and approach it using Bayesian techniques inspired by methods for multi-armed bandits. The proposed algorithm, Thompson sampling GFlowNets (TS-GFN), maintains an approximate posterior distribution over policies and samples trajectories from this posterior for training. We show in two domains that TS-GFN yields improved exploration and thus faster convergence to the target distribution than the off-policy exploration strategies used in past work.
Multi-Objective GFlowNets
Moksh J. Jain
Sharath Chandra Raparthy
Alex Hernandez-Garcia
Jarrid Rector-Brooks
Santiago Miret
Emmanuel Bengio
We study the problem of generating diverse candidates in the context of Multi-Objective Optimization. In many applications of machine learni… (see more)ng such as drug discovery and material design, the goal is to generate candidates which simultaneously optimize a set of potentially conflicting objectives. Moreover, these objectives are often imperfect evaluations of some underlying property of interest, making it important to generate diverse candidates to have multiple options for expensive downstream evaluations. We propose Multi-Objective GFlowNets (MOGFNs), a novel method for generating diverse Pareto optimal solutions, based on GFlowNets. We introduce two variants of MOGFNs: MOGFN-PC, which models a family of independent sub-problems defined by a scalarization function, with reward-conditional GFlowNets, and MOGFN-AL, which solves a sequence of sub-problems defined by an acquisition function in an active learning loop. Our experiments on wide variety of synthetic and benchmark tasks demonstrate advantages of the proposed methods in terms of the Pareto performance and importantly, improved candidate diversity, which is the main contribution of this work.
Behavioral Cloning for Crystal Design
Prashant Govindarajan
Santiago Miret
Jarrid Rector-Brooks
Mariano Phielipp
Janarthanan Rajendran
Solid-state materials, which are made up of periodic 3D crystal structures, are particularly useful for a variety of real-world applications… (see more) such as batteries, fuel cells and catalytic materials. Designing solid-state materials, especially in a robust and automated fashion, remains an ongoing challenge. To further the automated design of crystalline materials, we propose a method to learn to design valid crystal structures given a crystal skeleton. By incorporating Euclidean equivariance into a policy network, we portray the problem of designing new crystals as a sequential prediction task suited for imitation learning. At each step, given an incomplete graph of a crystal skeleton, an agent assigns an element to a specific node. We adopt a behavioral cloning strategy to train the policy network on data consisting of curated trajectories generated from known crystals.
DEUP: Direct Epistemic Uncertainty Prediction
Moksh J. Jain
Salem Lahlou
Hadi Nekoei
Victor I Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Epistemic Uncertainty is a measure of the lack of knowledge of a learner which diminishes with more evidence. While existing work focuses on… (see more) using the variance of the Bayesian posterior due to parameter uncertainty as a measure of epistemic uncertainty, we argue that this does not capture the part of lack of knowledge induced by model misspecification. We discuss how the excess risk, which is the gap between the generalization error of a predictor and the Bayes predictor, is a sound measure of epistemic uncertainty which captures the effect of model misspecification. We thus propose a principled framework for directly estimating the excess risk by learning a secondary predictor for the generalization error and subtracting an estimate of aleatoric uncertainty, i.e., intrinsic unpredictability. We discuss the merits of this novel measure of epistemic uncertainty, and highlight how it differs from variance-based measures of epistemic uncertainty and addresses its major pitfall. Our framework, Direct Epistemic Uncertainty Prediction (DEUP) is particularly interesting in interactive learning environments, where the learner is allowed to acquire novel examples in each round. Through a wide set of experiments, we illustrate how existing methods in sequential model optimization can be improved with epistemic uncertainty estimates from DEUP, and how DEUP can be used to drive exploration in reinforcement learning. We also evaluate the quality of uncertainty estimates from DEUP for probabilistic image classification and predicting synergies of drug combinations.
Conditional Flow Matching: Simulation-Free Dynamic Optimal Transport
Alexander Tong
Nikolay Malkin
Guillaume Huguet
Yanlei Zhang
Jarrid Rector-Brooks
Kilian FATRAS