Portrait of Gwen Legate is unavailable

Gwen Legate

PhD - Concordia University
Supervisor
Co-supervisor

Publications

Guiding The Last Layer in Federated Learning with Pre-Trained Models
Gwen Legate
Nicolas Bernier
Lucas Caccia
Edouard Oyallon
Re-Weighted Softmax Cross-Entropy to Control Forgetting in Federated Learning
Gwen Legate
Lucas Caccia
In Federated Learning, a global model is learned by aggregating model updates computed at a set of independent client nodes, to reduce commu… (see more)nication costs multiple gradient steps are performed at each node prior to aggregation. A key challenge in this setting is data heterogeneity across clients resulting in differing local objectives which can lead clients to overly minimize their own local objective, diverging from the global solution. We demonstrate that individual client models experience a catastrophic forgetting with respect to data from other clients and propose an efficient approach that modifies the cross-entropy objective on a per-client basis by re-weighting the softmax logits prior to computing the loss. This approach shields classes outside a client's label set from abrupt representation change and we empirically demonstrate it can alleviate client forgetting and provide consistent improvements to standard federated learning algorithms. Our method is particularly beneficial under the most challenging federated learning settings where data heterogeneity is high and client participation in each round is low.
Re-Weighted Softmax Cross-Entropy to Control Forgetting in Federated Learning
Gwen Legate
Lucas Caccia
In Federated Learning a global model is learned by aggregating model updates computed at a set of independent client nodes. To reduce commun… (see more)ication costs, multiple gradient steps are performed at each node prior to aggregation. A key challenge in this setting is data heterogeneity across clients resulting in differing local objectives. This can lead clients to overly minimize their own local objective consequently diverging from the global solution. We demonstrate that individual client models experience a catastrophic forgetting with respect to data from other clients and propose an efficient approach that modifies the cross-entropy objective on a per-client basis by re-weighting the softmax logits prior to computing the loss. This approach shields classes outside a client’s label set from abrupt representation change and we empirically demonstrate it can alleviate client forgetting and provide consistent improvements to standard federated learning algorithms. Our method is particularly beneficial under the most challenging federated learning settings where data heterogeneity is high and client participation in each round is low.