Portrait of Negar Rostamzadeh

Negar Rostamzadeh

Associate Industry Member
Senior Research Scientist, Google Brain Ethical AI Team
Research Topics
Computer Vision
Generative Models
Multimodal Learning

Biography

Negar Rostamzadeh is a Senior Research Scientist at Google Responsible AI team and an Associate Industrial member at Mila - Quebec Artificial Intelligence Institute. Her research primarily focuses on understanding the social implications of machine learning and evaluation systems, as well as developing equitable and fair ML systems.

Negar holds a deep interest in the creative applications of computer vision and their impact on society and artists. She is the founder and program chair of the workshop series, "Computer Vision for Fashion, Art, and Design," as well as "Ethical Considerations in Creative Applications," featured at Computer Vision venues from ECCV 2018 to CVPR 2023.

Before joining Google, Negar worked as a research scientist at Element AI (Service Now), where she specialized in efficient learning from limited data in computer vision and multi-modal problems.

She completed her PhD in 2017 at the University of Trento under the supervision of Prof. Nicu Sebe, focusing on Video Understanding problems. She also spent two years at MILA (2015-2017), working on attention mechanisms in videos, generative models, and video captioning under the guidance of Prof. Aaron Courville. In 2016, she had the opportunity to intern with Google's Machine Intelligence team.

Negar actively contributes to various community engagements within the AI community. She has served as the program chair for the workshop series, "Science meets Engineering of Deep Learning," at ICLR, FAccT, and NeurIPS. Since 2020, she has been a board member of the Montreal AI Symposium, and in 2019, she held the position of Senior Program Chair. Negar is also an Area Chair for Vision Conferences such as CVPR and ICCV, and gave multiple keynotes in various workshops and conferences.

Current Students

Master's Research - McGill University
Principal supervisor :

Publications

Deep Complex Networks
Chiheb Trabelsi
Dmitriy Serdyuk
Sandeep Subramanian
Joao Felipe Santos
Soroush Mehri
At present, the vast majority of building blocks, techniques, and architectures for deep learning are based on real-valued operations and re… (see more)presentations. However, recent work on recurrent neural networks and older fundamental theoretical analysis suggests that complex numbers could have a richer representational capacity and could also facilitate noise-robust memory retrieval mechanisms. Despite their attractive properties and potential for opening up entirely new neural architectures, complex-valued deep neural networks have been marginalized due to the absence of the building blocks required to design such models. In this work, we provide the key atomic components for complex-valued deep neural networks and apply them to convolutional feed-forward networks and convolutional LSTMs. More precisely, we rely on complex convolutions and present algorithms for complex batch-normalization, complex weight initialization strategies for complex-valued neural nets and we use them in experiments with end-to-end training schemes. We demonstrate that such complex-valued models are competitive with their real-valued counterparts. We test deep complex models on several computer vision tasks, on music transcription using the MusicNet dataset and on Speech Spectrum Prediction using the TIMIT dataset. We achieve state-of-the-art performance on these audio-related tasks.
Deep Complex Networks
Chiheb Trabelsi
Dmitriy Serdyuk
Sandeep Subramanian
Joao Felipe Santos
Soroush Mehri
Deep Complex Networks
Chiheb Trabelsi
Dmitriy Serdyuk
Sandeep Subramanian
Joao Felipe Santos
Soroush Mehri
Deep Complex Networks
Chiheb Trabelsi
Dmitriy Serdyuk
Sandeep Subramanian
Joao Felipe Santos
Soroush Mehri
Deep Complex Networks
Chiheb Trabelsi
Dmitriy Serdyuk
Sandeep Subramanian
Joao Felipe Santos
Soroush Mehri
Deep Complex Networks
Chiheb Trabelsi
Dmitriy Serdyuk
Sandeep Subramanian
Joao Felipe Santos
Soroush Mehri
Deep Complex Networks
Chiheb Trabelsi
Dmitriy Serdyuk
Sandeep Subramanian
Joao Felipe Santos
Soroush Mehri