We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Patch foraging is one of the most heavily studied behavioral optimization challenges in biology. However, despite its importance to biologic… (see more)al intelligence, this behavioral optimization problem is understudied in artificial intelligence research. Patch foraging is especially amenable to study given that it has a known optimal solution, which may be difficult to discover given current techniques in deep reinforcement learning. Here, we investigate deep reinforcement learning agents in an ecological patch foraging task. For the first time, we show that machine learning agents can learn to patch forage adaptively in patterns similar to biological foragers, and approach optimal patch foraging behavior when accounting for temporal discounting. Finally, we show emergent internal dynamics in these agents that resemble single-cell recordings from foraging non-human primates, which complements experimental and theoretical work on the neural mechanisms of biological foraging. This work suggests that agents interacting in complex environments with ecologically valid pressures arrive at common solutions, suggesting the emergence of foundational computations behind adaptive, intelligent behavior in both biological and artificial agents.
Despite evidence from cognitive sciences that larger groups of speakers tend to develop more structured languages in human communication, sc… (see more)aling up to populations has failed to yield significant benefits in emergent multi-agent communication. In this paper we advocate for an alternate population-level training paradigm for referential games based on the idea of "partitioning" the agents into sender-receiver pairs and limiting co-adaptation across pairs. We show that this results in optimizing a different objective at the population level, where agents maximize (1) their respective "internal" communication accuracy and (2) some measure of alignment between agents. In experiments, we find that this leads to the emergence of languages that are significantly more compositional. Moreover, when agents are trained in populations that are not fully connected (ie. not all agent pairs interact at training time), this approach reduces multi-linguality and improves zero-shot communication with new agents (ie. agents are able to communicate successfully with other agents outside their training partners).