We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Second-order methods such as KFAC can be useful for neural net training. However, they are often memory-inefficient since their precondition… (see more)ing Kronecker factors are dense, and numerically unstable in low precision as they require matrix inversion or decomposition. These limitations render such methods unpopular for modern mixed-precision training. We address them by (i) formulating an inverse-free KFAC update and (ii) imposing structures in the Kronecker factors, resulting in structured inverse-free natural gradient descent (SINGD). On modern neural networks, we show that SINGD is memory-efficient and numerically robust, in contrast to KFAC, and often outperforms AdamW even in half precision. Our work closes a gap between first- and second-order methods in modern low-precision training.