Portrait of Kartik Ahuja is unavailable

Kartik Ahuja

Alumni

Publications

Towards efficient representation identification in supervised learning
Humans have a remarkable ability to disentangle complex sensory inputs (e.g., image, text) into simple factors of variation (e.g., shape, co… (see more)lor) without much supervision. This ability has inspired many works that attempt to solve the following question: how do we invert the data generation process to extract those factors with minimal or no supervision? Several works in the literature on non-linear independent component analysis have established this negative result; without some knowledge of the data generation process or appropriate inductive biases, it is impossible to perform this inversion. In recent years, a lot of progress has been made on disentanglement under structural assumptions, e.g., when we have access to auxiliary information that makes the factors of variation conditionally independent. However, existing work requires a lot of auxiliary information, e.g., in supervised classification, it prescribes that the number of label classes should be at least equal to the total dimension of all factors of variation. In this work, we depart from these assumptions and ask: a) How can we get disentanglement when the auxiliary information does not provide conditional independence over the factors of variation? b) Can we reduce the amount of auxiliary information required for disentanglement? For a class of models where auxiliary information does not ensure conditional independence, we show theoretically and experimentally that disentanglement (to a large extent) is possible even when the auxiliary information dimension is much less than the dimension of the true latent representation.
WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series Tasks
Properties from mechanisms: an equivariance perspective on identifiable representation learning
Jason Hartford
A key goal of unsupervised representation learning is ``inverting'' a data generating process to recover its latent properties. Existing wo… (see more)rk that provably achieves this goal relies on strong assumptions on relationships between the latent variables (e.g., independence conditional on auxiliary information). In this paper, we take a very different perspective on the problem and ask, ``Can we instead identify latent properties by leveraging knowledge of the mechanisms that govern their evolution?'' We provide a complete characterization of the sources of non-identifiability as we vary knowledge about a set of possible mechanisms. In particular, we prove that if we know the exact mechanisms under which the latent properties evolve, then identification can be achieved up to any equivariances that are shared by the underlying mechanisms. We generalize this characterization to settings where we only know some hypothesis class over possible mechanisms, as well as settings where the mechanisms are stochastic. We demonstrate the power of this mechanism-based perspective by showing that we can leverage our results to generalize existing identifiable representation learning results. These results suggest that by exploiting inductive biases on mechanisms, it is possible to design a range of new identifiable representation learning approaches.
Extended Abstract Track
Jason Hartford
Christian Shewmake
Simone Azeglio
Arianna Di Bernardo
Nina Miolane
There has been significant recent progress in causal representation learning that has showed a variety of settings in which we can disentang… (see more)le latent variables with identifiability guarantees (up to some reasonable equivalence class). Common to all of these approaches is the assumption that (1) the latent variables are d − dimensional vectors, and (2) that the observations are the output of some injective observation function of these latent variables. While these assumptions appear benign—they amount to assuming that any changes in the latent space are reflected in the observation space, and that we can use standard encoders to infer the latent variables—we show that when the observations are of multiple objects, the observation function is no longer injective, and disentanglement fails in practice. We can address this failure by combining recent developments in object-centric learning and causal representation learning. By modifying the Slot Attention architecture (Locatello et al., 2020b), we develop an object-centric architecture that leverages weak supervision from sparse perturbations to disentangle each object’s properties. We argue that this approach is more data-efficient in the sense that it requires significantly fewer perturbations than a comparable approach that encodes to a Euclidean space and, we show that this approach successfully disentangles the properties of a set of objects in a series of simple image-based disentanglement experiments.
Extended Abstract Track
Jason Hartford
Christian Shewmake
Simone Azeglio
Arianna Di Bernardo
Nina Miolane
Extended Abstract Track
Jason Hartford
Christian Shewmake
Simone Azeglio
Arianna Di Bernardo
Nina Miolane
Extended Abstract Track
Jason Hartford
Christian Shewmake
Simone Azeglio
Arianna Di Bernardo
Nina Miolane
Weakly Supervised Representation Learning with Sparse Perturbations
Jason Hartford
The theory of representation learning aims to build methods that provably invert the data generating process with minimal domain knowledge o… (see more)r any source of supervision. Most prior approaches require strong distributional assumptions on the latent variables and weak supervision (auxiliary information such as timestamps) to provide provable identification guarantees. In this work, we show that if one has weak supervision from observations generated by sparse perturbations of the latent variables--e.g. images in a reinforcement learning environment where actions move individual sprites--identification is achievable under unknown continuous latent distributions. We show that if the perturbations are applied only on mutually exclusive blocks of latents, we identify the latents up to those blocks. We also show that if these perturbation blocks overlap, we identify latents up to the smallest blocks shared across perturbations. Consequently, if there are blocks that intersect in one latent variable only, then such latents are identified up to permutation and scaling. We propose a natural estimation procedure based on this theory and illustrate it on low-dimensional synthetic and image-based experiments.
SAND-mask: An Enhanced Gradient Masking Strategy for the Discovery of Invariances in Domain Generalization
A major bottleneck in the real-world applications of machine learning models is their failure in generalizing to unseen domains whose data d… (see more)istribution is not i.i.d to the training domains. This failure often stems from learning non-generalizable features in the training domains that are spuriously correlated with the label of data. To address this shortcoming, there has been a growing surge of interest in learning good explanations that are hard to vary, which is studied under the notion of Out-of-Distribution (OOD) Generalization. The search for good explanations that are \textit{invariant} across different domains can be seen as finding local (global) minimas in the loss landscape that hold true across all of the training domains. In this paper, we propose a masking strategy, which determines a continuous weight based on the agreement of gradients that flow in each edge of network, in order to control the amount of update received by the edge in each step of optimization. Particularly, our proposed technique referred to as"Smoothed-AND (SAND)-masking", not only validates the agreement in the direction of gradients but also promotes the agreement among their magnitudes to further ensure the discovery of invariances across training domains. SAND-mask is validated over the Domainbed benchmark for domain generalization and significantly improves the state-of-the-art accuracy on the Colored MNIST dataset while providing competitive results on other domain generalization datasets.
Adversarial Feature Desensitization
Neural networks are known to be vulnerable to adversarial attacks -- slight but carefully constructed perturbations of the inputs which can … (see more)drastically impair the network's performance. Many defense methods have been proposed for improving robustness of deep networks by training them on adversarially perturbed inputs. However, these models often remain vulnerable to new types of attacks not seen during training, and even to slightly stronger versions of previously seen attacks. In this work, we propose a novel approach to adversarial robustness, which builds upon the insights from the domain adaptation field. Our method, called Adversarial Feature Desensitization (AFD), aims at learning features that are invariant towards adversarial perturbations of the inputs. This is achieved through a game where we learn features that are both predictive and robust (insensitive to adversarial attacks), i.e. cannot be used to discriminate between natural and adversarial data. Empirical results on several benchmarks demonstrate the effectiveness of the proposed approach against a wide range of attack types and attack strengths. Our code is available at https://github.com/BashivanLab/afd.
Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?
Can models with particular structure avoid being biased towards spurious correlation in out-of-distribution (OOD) generalization? Peters et … (see more)al. (2016) provides a positive answer for linear cases. In this paper, we use a functional modular probing method to analyze deep model structures under OOD setting. We demonstrate that even in biased models (which focus on spurious correlation) there still exist unbiased functional subnetworks. Furthermore, we articulate and demonstrate the functional lottery ticket hypothesis: full network contains a subnetwork that can achieve better OOD performance. We then propose Modular Risk Minimization to solve the subnetwork selection problem. Our algorithm learns the subnetwork structure from a given dataset, and can be combined with any other OOD regularization methods. Experiments on various OOD generalization tasks corroborate the effectiveness of our method.
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
The invariance principle from causality is at the heart of notable approaches such as invariant risk minimization (IRM) that seek to address… (see more) out-of-distribution (OOD) generalization failures. Despite the promising theory, invariance principle-based approaches fail in common classification tasks, where invariant (causal) features capture all the information about the label. Are these failures due to the methods failing to capture the invariance? Or is the invariance principle itself insufficient? To answer these questions, we revisit the fundamental assumptions in linear regression tasks, where invariance-based approaches were shown to provably generalize OOD. In contrast to the linear regression tasks, we show that for linear classification tasks we need much stronger restrictions on the distribution shifts, or otherwise OOD generalization is impossible. Furthermore, even with appropriate restrictions on distribution shifts in place, we show that the invariance principle alone is insufficient. We prove that a form of the information bottleneck constraint along with invariance helps address key failures when invariant features capture all the information about the label and also retains the existing success when they do not. We propose an approach that incorporates both of these principles and demonstrate its effectiveness in several experiments.