Portrait of Jessie Huang is unavailable

Jessie Huang

Alumni

Publications

Single-cell analysis reveals inflammatory interactions driving macular degeneration
Manik Kuchroo
Marcello DiStasio
Eric Song
Eda Calapkulu
Maryam Ige
Amar H. Sheth
Abdelilah Majdoubi
Madhvi Menon
Abhinav Godavarthi
Yu Xing
Scott Gigante
Holly Steach
Je-chun Huang
Janhavi Narain
Kisung You
George Mourgkos … (see 6 more)
Rahul M. Dhodapkar
Matthew Hirn
Bastian Rieck
Brian P. Hafler
Learning Shared Neural Manifolds from Multi-Subject FMRI Data
Je-chun Huang
Erica Lindsey Busch
Tom Wallenstein
Michal Gerasimiuk
Andrew Benz
Nicholas Turk-Browne
Functional magnetic resonance imaging (fMRI) data is collected in millions of noisy, redundant dimensions. To understand how different brain… (see more)s process the same stimulus, we aim to denoise the fMRI signal via a meaningful embedding space that captures the data's intrinsic structure as shared across brains. We assume that stimulus-driven responses share latent features common across subjects that are jointly discoverable. Previous approaches to this problem have relied on linear methods like principal component analysis and shared response modeling. We propose a neural network called MRMD-AE (manifold-regularized multiple- decoder, autoencoder) that learns a common embedding from multi-subject fMRI data while retaining the ability to decode individual responses. Our latent common space represents an extensible manifold (where untrained data can be mapped) and improves classification accuracy of stimulus features of unseen timepoints, as well as cross-subject translation of fMRI signals.
Population Genomics Approaches for Genetic Characterization of SARS-CoV-2 Lineages
Isabel Gamache
Arnaud N’Guessan
Justin Pelletier
Carmen Lia Murall
Vanda Gaonac'h-Lovejoy
David J. Hamelin
Raphael Poujol
Jean-Christophe Grenier
Martin Smith
Etienne Caron
Morgan Craig
B. Jesse Shapiro
Population Genomics Approaches for Genetic Characterization of SARS-CoV-2 Lineages
I. Gamache
Arnaud N’Guessan
Justin Pelletier
Carmen Lia Murall
Vanda Gaonac'h-Lovejoy
David J. Hamelin
Raphael Poujol
Jean-Christophe Grenier
Martin W. Smith
Étienne Caron
Morgan Craig
B. Jesse Shapiro
The genome of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19)… (see more), has been sequenced at an unprecedented scale leading to a tremendous amount of viral genome sequencing data. To assist in tracing infection pathways and design preventive strategies, a deep understanding of the viral genetic diversity landscape is needed. We present here a set of genomic surveillance tools from population genetics which can be used to better understand the evolution of this virus in humans. To illustrate the utility of this toolbox, we detail an in depth analysis of the genetic diversity of SARS-CoV-2 in first year of the COVID-19 pandemic. We analyzed 329,854 high-quality consensus sequences published in the GISAID database during the pre-vaccination phase. We demonstrate that, compared to standard phylogenetic approaches, haplotype networks can be computed efficiently on much larger datasets. This approach enables real-time lineage identification, a clear description of the relationship between variants of concern, and efficient detection of recurrent mutations. Furthermore, time series change of Tajima's D by haplotype provides a powerful metric of lineage expansion. Finally, principal component analysis (PCA) highlights key steps in variant emergence and facilitates the visualization of genomic variation in the context of SARS-CoV-2 diversity. The computational framework presented here is simple to implement and insightful for real-time genomic surveillance of SARS-CoV-2 and could be applied to any pathogen that threatens the health of populations of humans and other organisms.
Data-driven approaches for genetic characterization of SARS-CoV-2 lineages
Isabel Gamache
Arnaud N’Guessan
Justin Pelletier
David J. Hamelin
Carmen Lia Murall
Raphael Poujol
Jean-Christophe Grenier
Martin Smith
Etienne Caron
Morgan Craig
Jesse Shapiro
The genome of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19)… (see more), has been sequenced at an unprecedented scale, leading to a tremendous amount of viral genome sequencing data. To understand the evolution of this virus in humans, and to assist in tracing infection pathways and designing preventive strategies, we present a set of computational tools that span phylogenomics, population genetics and machine learning approaches. To illustrate the utility of this toolbox, we detail an in depth analysis of the genetic diversity of SARS-CoV-2 in first year of the COVID-19 pandemic, using 329,854 high-quality consensus sequences published in the GISAID database during the pre-vaccination phase. We demonstrate that, compared to standard phylogenetic approaches, haplotype networks can be computed efficiently on much larger datasets, enabling real-time analyses. Furthermore, time series change of Tajima’s D provides a powerful metric of population expansion. Unsupervised learning techniques further highlight key steps in variant detection and facilitate the study of the role of this genomic variation in the context of SARS-CoV-2 infection, with Multiscale PHATE methodology identifying fine-scale structure in the SARS-CoV-2 genetic data that underlies the emergence of key lineages. The computational framework presented here is useful for real-time genomic surveillance of SARS-CoV-2 and could be applied to any pathogen that threatens the health of worldwide populations of humans and other organisms.
Multiscale PHATE Exploration of SARS-CoV-2 Data Reveals Multimodal Signatures of Disease
Manik Kuchroo
Patrick Wong
Jean-Christophe Grenier
Dennis Shung
Carolina Lucas
Jon Klein
Daniel B. Burkhardt
Scott Gigante
Abhinav Godavarthi
Benjamin Israelow
Tianyang Mao
Ji Eun Oh
Julio Silva
Takehiro Takahashi
Camila D. Odio
Arnau Casanovas-Massana
John Fournier
Shelli Farhadian … (see 7 more)
Charles S. Dela Cruz
Albert I. Ko
F. Perry Wilson
Akiko Iwasaki