Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Approximately two-thirds of survivors of childhood acute lymphoblastic leukemia (ALL) cancer develop late adverse effects post-treatment. Pr… (see more)ior studies explored prediction models for personalized follow-up, but none integrated the usage of neural networks to date. In this work, we propose the Error Passing Network (EPN), a graph-based method that leverages relationships between samples to propagate residuals and adjust predictions of any machine learning model. We tested our approach to estimate patients’ \vo peak, a reliable indicator of their cardiac health. We used the EPN in conjunction with several baseline models and observed up to 12.16% improvement in the mean average percentage error compared to the last established equation predicting \vo peak in childhood ALL survivors. Along with this performance improvement, our final model is more efficient considering that it relies only on clinical variables that can be self-reported by patients, therefore removing the previous need of executing a resource-consuming physical test.
2024-07-24
Proceedings of the fifth Conference on Health, Inference, and Learning (published)