Portrait of Foutse Khomh

Foutse Khomh

Associate Academic Member
Canada CIFAR AI Chair
Professor, Polytechnique Montréal, Department of Computer Engineering and Software Engineering
Research Topics
Data Mining
Deep Learning
Distributed Systems
Generative Models
Learning to Program
Natural Language Processing
Reinforcement Learning

Biography

Foutse Khomh is a full professor of software engineering at Polytechnique Montréal, a Canada CIFAR AI Chair – Trustworthy Machine Learning Software Systems, and an FRQ-IVADO Research Chair in Software Quality Assurance for Machine Learning Applications. Khomh completed a PhD in software engineering at Université de Montréal in 2011, for which he received an Award of Excellence. He was also awarded a CS-Can/Info-Can Outstanding Young Computer Science Researcher Prize in 2019.

His research interests include software maintenance and evolution, machine learning systems engineering, cloud engineering, and dependable and trustworthy ML/AI. His work has received four Ten-year Most Influential Paper (MIP) awards, and six Best/Distinguished Paper Awards. He has served on the steering committee of numerous organizations in software engineering, including SANER (chair), MSR, PROMISE, ICPC (chair), and ICSME (vice-chair). He initiated and co-organized Polytechnique Montréal‘s Software Engineering for Machine Learning Applications (SEMLA) symposium and the RELENG (release engineering) workshop series.

Khomh co-founded the NSERC CREATE SE4AI: A Training Program on the Development, Deployment and Servicing of Artificial Intelligence-based Software Systems, and is a principal investigator for the DEpendable Explainable Learning (DEEL) project.

He also co-founded Confiance IA, a Quebec consortium focused on building trustworthy AI, and is on the editorial board of multiple international software engineering journals, including IEEE Software, EMSE and JSEP. He is a senior member of IEEE.

Current Students

Master's Research - Polytechnique Montréal
PhD - Polytechnique Montréal
PhD - Polytechnique Montréal
Master's Research - Polytechnique Montréal
Postdoctorate - Polytechnique Montréal
Co-supervisor :
Postdoctorate - Polytechnique Montréal
Master's Research - Polytechnique Montréal
PhD - Polytechnique Montréal
Master's Research - Polytechnique Montréal

Publications

Understanding Web Application Workloads and Their Applications: Systematic Literature Review and Characterization
Roozbeh Aghili
Qiaolin Qin
Heng Li
What Information Contributes to Log-based Anomaly Detection? Insights from a Configurable Transformer-Based Approach
Xingfang Wu
Heng Li
Log data are generated from logging statements in the source code, providing insights into the execution processes of software applications … (see more)and systems. State-of-the-art log-based anomaly detection approaches typically leverage deep learning models to capture the semantic or sequential information in the log data and detect anomalous runtime behaviors. However, the impacts of these different types of information are not clear. In addition, existing approaches have not captured the timestamps in the log data, which can potentially provide more fine-grained temporal information than sequential information. In this work, we propose a configurable transformer-based anomaly detection model that can capture the semantic, sequential, and temporal information in the log data and allows us to configure the different types of information as the model's features. Additionally, we train and evaluate the proposed model using log sequences of different lengths, thus overcoming the constraint of existing methods that rely on fixed-length or time-windowed log sequences as inputs. With the proposed model, we conduct a series of experiments with different combinations of input features to evaluate the roles of different types of information in anomaly detection. When presented with log sequences of varying lengths, the model can attain competitive and consistently stable performance compared to the baselines. The results indicate that the event occurrence information plays a key role in identifying anomalies, while the impact of the sequential and temporal information is not significant for anomaly detection in the studied public datasets. On the other hand, the findings also reveal the simplicity of the studied public datasets and highlight the importance of constructing new datasets that contain different types of anomalies to better evaluate the performance of anomaly detection models.
Understanding Web Application Workloads and Their Applications: Systematic Literature Review and Characterization
Roozbeh Aghili
Qiaolin Qin
Heng Li
Web applications, accessible via web browsers over the Internet, facilitate complex functionalities without local software installation. In … (see more)the context of web applications, a workload refers to the number of user requests sent by users or applications to the underlying system. Existing studies have leveraged web application workloads to achieve various objectives, such as workload prediction and auto-scaling. However, these studies are conducted in an ad hoc manner, lacking a systematic understanding of the characteristics of web application workloads. In this study, we first conduct a systematic literature review to identify and analyze existing studies leveraging web application workloads. Our analysis sheds light on their workload utilization, analysis techniques, and high-level objectives. We further systematically analyze the characteristics of the web application workloads identified in the literature review. Our analysis centers on characterizing these workloads at two distinct temporal granularities: daily and weekly. We successfully identify and categorize three daily and three weekly patterns within the workloads. By providing a statistical characterization of these workload patterns, our study highlights the uniqueness of each pattern, paving the way for the development of realistic workload generation and resource provisioning techniques that can benefit a range of applications and research areas.
An Empirical Study of Sensitive Information in Logs
Roozbeh Aghili
Heng Li
Trimming the Risk: Towards Reliable Continuous Training for Deep Learning Inspection Systems
Altaf Allah Abbassi
Houssem Ben Braiek
Thomas Reid
Reputation Gaming in Crowd Technical Knowledge Sharing
Iren Mazloomzadeh
Gias Uddin
Ashkan Sami
Stack Overflow incentive system awards users with reputation scores to ensure quality. The decentralized nature of the forum may make the in… (see more)centive system prone to manipulation. This paper offers, for the first time, a comprehensive study of the reported types of reputation manipulation scenarios that might be exercised in Stack Overflow and the prevalence of such reputation gamers by a qualitative study of 1,697 posts from meta Stack Exchange sites. We found four different types of reputation fraud scenarios, such as voting rings where communities form to upvote each other repeatedly on similar posts. We developed algorithms that enable platform managers to automatically identify these suspicious reputation gaming scenarios for review. The first algorithm identifies isolated/semi-isolated communities where probable reputation frauds may occur mostly by collaborating with each other. The second algorithm looks for sudden unusual big jumps in the reputation scores of users. We evaluated the performance of our algorithms by examining the reputation history dashboard of Stack Overflow users from the Stack Overflow website. We observed that around 60-80% of users flagged as suspicious by our algorithms experienced reductions in their reputation scores by Stack Overflow.
Assessing Programming Task Difficulty for Efficient Evaluation of Large Language Models
Florian Tambon
Amin Nikanjam
Giuliano Antoniol
TaskEval: Assessing Difficulty of Code Generation Tasks for Large Language Models
Florian Tambon
Amin Nikanjam
Cyrine Zid
Giuliano Antoniol
Mining Action Rules for Defect Reduction Planning
Khouloud Oueslati
gabriel laberge
Maxime Lamothe
Defect reduction planning plays a vital role in enhancing software quality and minimizing software maintenance costs. By training a black bo… (see more)x machine learning model and"explaining"its predictions, explainable AI for software engineering aims to identify the code characteristics that impact maintenance risks. However, post-hoc explanations do not always faithfully reflect what the original model computes. In this paper, we introduce CounterACT, a Counterfactual ACTion rule mining approach that can generate defect reduction plans without black-box models. By leveraging action rules, CounterACT provides a course of action that can be considered as a counterfactual explanation for the class (e.g., buggy or not buggy) assigned to a piece of code. We compare the effectiveness of CounterACT with the original action rule mining algorithm and six established defect reduction approaches on 9 software projects. Our evaluation is based on (a) overlap scores between proposed code changes and actual developer modifications; (b) improvement scores in future releases; and (c) the precision, recall, and F1-score of the plans. Our results show that, compared to competing approaches, CounterACT's explainable plans achieve higher overlap scores at the release level (median 95%) and commit level (median 85.97%), and they offer better trade-off between precision and recall (median F1-score 88.12%). Finally, we venture beyond planning and explore leveraging Large Language models (LLM) for generating code edits from our generated plans. Our results show that suggested LLM code edits supported by our plans are actionable and are more likely to pass relevant test cases than vanilla LLM code recommendations.
DeepCodeProbe: Towards Understanding What Models Trained on Code Learn
Vahid Majdinasab
Amin Nikanjam
Chain of Targeted Verification Questions to Improve the Reliability of Code Generated by LLMs
Sylvain Kouemo Ngassom
Arghavan Moradi Dakhel
Florian Tambon
Design smells in multi-language systems and bug-proneness: a survival analysis
Mouna Abidi
Md Saidur Rahman
Moses Openja