Portrait of Florian Bordes

Florian Bordes

PhD - Université de Montréal
Supervisor
Research Topics
Computer Vision
Generative Models
Representation Learning

Publications

Objectives Matter: Understanding the Impact of Self-Supervised Objectives on Vision Transformer Representations
Shashank Shekhar
Ari S. Morcos
Joint-embedding based learning (e.g., SimCLR, MoCo, DINO) and reconstruction-based learning (e.g., BEiT, SimMIM, MAE) are the two leading pa… (see more)radigms for self-supervised learning of vision transformers, but they differ substantially in their transfer performance. Here, we aim to explain these differences by analyzing the impact of these objectives on the structure and transferability of their representations. Our analysis reveals that reconstruction-based learning features are significantly dissimilar to joint-embedding based learning features and that models trained with similar objectives learn similar features even across architectures. These differences arise early in the network, primarily driven by attention and normalization layers. We find that joint-embedding features yield better linear probe transfer for classification because the different objectives drive different distributions of information and invariances in the representation. These differences explain opposite trends in transfer performance for downstream tasks that require spatial specificity in features. Finally, we address how fine-tuning changes reconstructive representations to enable better transfer, showing that it re-organizes the information to be more similar to pre-trained joint embedding models.
Towards Democratizing Joint-Embedding Self-Supervised Learning
Randall Balestriero
Joint Embedding Self-Supervised Learning (JE-SSL) has seen rapid developments in recent years, due to its promise to effectively leverage la… (see more)rge unlabeled data. The development of JE-SSL methods was driven primarily by the search for ever increasing downstream classification accuracies, using huge computational resources, and typically built upon insights and intuitions inherited from a close parent JE-SSL method. This has led unwittingly to numerous pre-conceived ideas that carried over across methods e.g. that SimCLR requires very large mini batches to yield competitive accuracies; that strong and computationally slow data augmentations are required. In this work, we debunk several such ill-formed a priori ideas in the hope to unleash the full potential of JE-SSL free of unnecessary limitations. In fact, when carefully evaluating performances across different downstream tasks and properly optimizing hyper-parameters of the methods, we most often -- if not always -- see that these widespread misconceptions do not hold. For example we show that it is possible to train SimCLR to learn useful representations, while using a single image patch as negative example, and simple Gaussian noise as the only data augmentation for the positive pair. Along these lines, in the hope to democratize JE-SSL and to allow researchers to easily make more extensive evaluations of their methods, we introduce an optimized PyTorch library for SSL.
The Hidden Uniform Cluster Prior in Self-Supervised Learning
Mahmoud Assran
Randall Balestriero
Quentin Duval
Ishan Misra
Piotr Bojanowski
Nicolas Ballas
A successful paradigm in representation learning is to perform self-supervised pretraining using tasks based on mini-batch statistics (e.g.,… (see more) SimCLR, VICReg, SwAV, MSN). We show that in the formulation of all these methods is an overlooked prior to learn features that enable uniform clustering of the data. While this prior has led to remarkably semantic representations when pretraining on class-balanced data, such as ImageNet, we demonstrate that it can hamper performance when pretraining on class-imbalanced data. By moving away from conventional uniformity priors and instead preferring power-law distributed feature clusters, we show that one can improve the quality of the learned representations on real-world class-imbalanced datasets. To demonstrate this, we develop an extension of the Masked Siamese Networks (MSN) method to support the use of arbitrary features priors.
Guillotine Regularization: Why removing layers is needed to improve generalization in Self-Supervised Learning
Randall Balestriero
Quentin Garrido
Adrien Bardes
One unexpected technique that emerged in recent years consists in training a Deep Network (DN) with a Self-Supervised Learning (SSL) method,… (see more) and using this network on downstream tasks but with its last few projector layers entirely removed. This trick of throwing away the projector is actually critical for SSL methods to display competitive performances on ImageNet for which more than 30 percentage points can be gained that way. This is a little vexing, as one would hope that the network layer at which invariance is explicitly enforced by the SSL criterion during training (the last projector layer) should be the one to use for best generalization performance downstream. But it seems not to be, and this study sheds some light on why. This trick, which we name Guillotine Regularization (GR), is in fact a generically applicable method that has been used to improve generalization performance in transfer learning scenarios. In this work, we identify the underlying reasons behind its success and show that the optimal layer to use might change significantly depending on the training setup, the data or the downstream task. Lastly, we give some insights on how to reduce the need for a projector in SSL by aligning the pretext SSL task and the downstream task.
High Fidelity Visualization of What Your Self-Supervised Representation Knows About
Randall Balestriero
Discovering what is learned by neural networks remains a challenge. In self-supervised learning, classification is the most common task used… (see more) to evaluate how good a representation is. However, relying only on such downstream task can limit our understanding of what information is retained in the representation of a given input. In this work, we showcase the use of a Representation Conditional Diffusion Model (RCDM) to visualize in data space the representations learned by self-supervised models. The use of RCDM is motivated by its ability to generate high-quality samples -- on par with state-of-the-art generative models -- while ensuring that the representations of those samples are faithful i.e. close to the one used for conditioning. By using RCDM to analyze self-supervised models, we are able to clearly show visually that i) SSL (backbone) representation are not invariant to the data augmentations they were trained with -- thus debunking an often restated but mistaken belief; ii) SSL post-projector embeddings appear indeed invariant to these data augmentation, along with many other data symmetries; iii) SSL representations appear more robust to small adversarial perturbation of their inputs than representations trained in a supervised manner; and iv) that SSL-trained representations exhibit an inherent structure that can be explored thanks to RCDM visualization and enables image manipulation.
Masked Siamese Networks for Label-Efficient Learning
Mahmoud Assran
Mathilde Caron
Ishan Misra
Piotr Bojanowski
Armand Joulin
Nicolas Ballas
We propose Masked Siamese Networks (MSN), a self-supervised learning framework for learning image representations. Our approach matches the … (see more)representation of an image view containing randomly masked patches to the representation of the original unmasked image. This self-supervised pre-training strategy is particularly scalable when applied to Vision Transformers since only the unmasked patches are processed by the network. As a result, MSNs improve the scalability of joint-embedding architectures, while producing representations of a high semantic level that perform competitively on low-shot image classification. For instance, on ImageNet-1K, with only 5,000 annotated images, our base MSN model achieves 72.4% top-1 accuracy, and with 1% of ImageNet-1K labels, we achieve 75.7% top-1 accuracy, setting a new state-of-the-art for self-supervised learning on this benchmark. Our code is publicly available.
Masked Siamese Networks for Label-Efficient Learning
Mahmoud Assran
Mathilde Caron
Ishan Misra
Piotr Bojanowski
Armand Joulin
Nicolas Ballas
We propose Masked Siamese Networks (MSN), a self-supervised learning framework for learning image representations. Our approach matches the … (see more)representation of an image view containing randomly masked patches to the representation of the original unmasked image. This self-supervised pre-training strategy is particularly scalable when applied to Vision Transformers since only the unmasked patches are processed by the network. As a result, MSNs improve the scalability of joint-embedding architectures, while producing representations of a high semantic level that perform competitively on low-shot image classification. For instance, on ImageNet-1K, with only 5,000 annotated images, our base MSN model achieves 72.4% top-1 accuracy, and with 1% of ImageNet-1K labels, we achieve 75.7% top-1 accuracy, setting a new state-of-the-art for self-supervised learning on this benchmark. Our code is publicly available.
Iteratively unveiling new regions of interest in Deep Learning models
Tess Berthier
Lisa Di Jorio
Recent advance of deep learning has been transforming the landscape in many domains. However, understanding the predictions of a deep networ… (see more)k remains a challenge, which is especially sensitive in health care domains as interpretability is key. Techniques that rely on saliency maps -highlighting the region of an image that influence the classifier’s decision the mostare often used for that purpose. However, gradients fluctuation make saliency maps noisy and thus difficult to interpret at a human level. Moreover, models tend to focus on one particular influential region of interest (ROI) in the image, even though other regions might be relevant for the decision. We propose a new framework that refines those saliency maps to generate segmentation masks over the ROI on the initial image. In a second contribution, we propose to apply those masks over the original inputs, then evaluate our classifier on the masked inputs to identify previously overlooked ROI. This iterative procedure allows us to emphasize new region of interests by extracting meaningful information from the saliency maps.