Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Dzmitry Bahdanau
Alumni
Publications
Combating False Negatives in Adversarial Imitation Learning
In adversarial imitation learning, a discriminator is trained to differentiate agent episodes from expert demonstrations representing the de… (see more)sired behavior. However, as the trained policy learns to be more successful, the negative examples (the ones produced by the agent) become increasingly similar to expert ones. Despite the fact that the task is successfully accomplished in some of the agent's trajectories, the discriminator is trained to output low values for them. We hypothesize that this inconsistent training signal for the discriminator can impede its learning, and consequently leads to worse overall performance of the agent. We show experimental evidence for this hypothesis and that the ‘False Negatives’ (i.e. successful agent episodes) significantly hinder adversarial imitation learning, which is the first contribution of this paper. Then, we propose a method to alleviate the impact of false negatives and test it on the BabyAI environment. This method consistently improves sample efficiency over the baselines by at least an order of magnitude.
2021-07-18
2021 International Joint Conference on Neural Networks (IJCNN) (published)
Negation is a core construction in natural language. Despite being very successful on many tasks, state-of-the-art pre-trained language mode… (see more)ls often handle negation incorrectly. To improve language models in this regard, we propose to augment the language modeling objective with an unlikelihood objective that is based on negated generic sentences from a raw text corpus. By training BERT with the resulting combined objective we reduce the mean top 1 error rate to 4% on the negated LAMA dataset. We also see some improvements on the negated NLI benchmarks.
2021-06-01
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (published)
The BabyAI platform is designed to measure the sample efficiency of training an agent to follow grounded-language instructions. BabyAI 1.0 … (see more)presents baseline results of an agent trained by deep imitation or reinforcement learning. BabyAI 1.1 improves the agent’s architecture in three minor ways. This increases reinforcement learning sample efficiency by up to 3 × and improves imitation learning performance on the hardest level from 77% to 90 . 4% . We hope that these improvements increase the computational efficiency of BabyAI experiments and help users design better agents.
The BabyAI platform is designed to measure the sample efficiency of training an agent to follow grounded-language instructions. BabyAI 1.0 p… (see more)resents baseline results of an agent trained by deep imitation or reinforcement learning. BabyAI 1.1 improves the agent's architecture in three minor ways. This increases reinforcement learning sample efficiency by up to 3 times and improves imitation learning performance on the hardest level from 77 % to 90.4 %. We hope that these improvements increase the computational efficiency of BabyAI experiments and help users design better agents.
The BabyAI platform is designed to measure the sample efficiency of training an agent to follow grounded-language instructions. BabyAI 1.0 p… (see more)resents baseline results of an agent trained by deep imitation or reinforcement learning. BabyAI 1.1 improves the agent's architecture in three minor ways. This increases reinforcement learning sample efficiency by up to 3 times and improves imitation learning performance on the hardest level from 77 % to 90.4 %. We hope that these improvements increase the computational efficiency of BabyAI experiments and help users design better agents.
The BabyAI platform is designed to measure the sample efficiency of training an agent to follow grounded-language instructions. BabyAI 1.0 p… (see more)resents baseline results of an agent trained by deep imitation or reinforcement learning. BabyAI 1.1 improves the agent's architecture in three minor ways. This increases reinforcement learning sample efficiency by up to 3 times and improves imitation learning performance on the hardest level from 77 % to 90.4 %. We hope that these improvements increase the computational efficiency of BabyAI experiments and help users design better agents.
Allowing humans to interactively train artificial agents to understand language instructions is desirable for both practical and scientific … (see more)reasons, but given the poor data efficiency of the current learning methods, this goal may require substantial research efforts. Here, we introduce the BabyAI research platform to support investigations towards including humans in the loop for grounded language learning. The BabyAI platform comprises an extensible suite of 19 levels of increasing difficulty. The levels gradually lead the agent towards acquiring a combinatorially rich synthetic language which is a proper subset of English. The platform also provides a heuristic expert agent for the purpose of simulating a human teacher. We report baseline results and estimate the amount of human involvement that would be required to train a neural network-based agent on some of the BabyAI levels. We put forward strong evidence that current deep learning methods are not yet sufficiently sample efficient when it comes to learning a language with compositional properties.