A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Alzheimer’s disease and related dementias (ADRD) are marked by intracellular tau aggregates in the medial-temporal lobe (MTL) and extracel… (see more)lular amyloid aggregates in the default network (DN). Here, we sought to clarify ADRD-related co-dependencies between the MTL’s most vulnerable structure, the hippocampus (HC), and the highly associative DN at a subregion resolution. We confronted the effects of APOE ɛ2 and ɛ4, rarely investigated together, with their impact on HC-DN co-variation regimes at the population level. In a two-pronged decomposition of structural brain scans from ∼40,000 UK Biobank participants, we located co-deviating structural patterns in HC and DN subregions as a function of ADRD family risk. Across the disclosed HC-DN signatures, recurrent deviations in the CA1, CA2/3, molecular layer, fornix’s fimbria, and their cortical partners related to ADRD risk. Phenome-wide profiling of HC-DN co- variation expressions from these population signatures revealed male-specific associations with air-pollution, and female-specific associations with cardiovascular traits. We highlighted three main factors associated with brain-APOE associations across the different gene variants: happiness, and satisfaction with friendships, and with family. We further showed that APOE ɛ2/2 interacts preferentially with HC-DN co-variation patterns in estimating social lifestyle in males and physical activity in females. Our findings reinvigorate the often-neglected interplay between APOE ɛ2 dosage and sex, which we have linked to fine-grained structural divergences indicative of ADRD susceptibility.