Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Annik Yalnizyan-carson
Alumni
Publications
Forgetting Enhances Episodic Control With Structured Memories
Forgetting is a normal process in healthy brains, and evidence suggests that the mammalian brain forgets more than is required based on limi… (see more)tations of mnemonic capacity. Episodic memories, in particular, are liable to be forgotten over time. Researchers have hypothesized that it may be beneficial for decision making to forget episodic memories over time. Reinforcement learning offers a normative framework in which to test such hypotheses. Here, we show that a reinforcement learning agent that uses an episodic memory cache to find rewards in maze environments can forget a large percentage of older memories without any performance impairments, if they utilize mnemonic representations that contain structural information about space. Moreover, we show that some forgetting can actually provide a benefit in performance compared to agents with unbounded memories. Our analyses of the agents show that forgetting reduces the influence of outdated information and states which are not frequently visited on the policies produced by the episodic control system. These results support the hypothesis that some degree of forgetting can be beneficial for decision making, which can help to explain why the brain forgets more than is required by capacity limitations.
2022-03-25
Frontiers in Computational Neuroscience (published)
Forgetting is a normal process in healthy brains, and evidence suggests that the mammalian brain forgets more than is required based on limi… (see more)tations of mnemonic capacity. Episodic memories, in particular, are liable to be forgotten over time. Researchers have hypothesized that it may be beneficial for decision making to forget episodic memories over time. Reinforcement learning offers a normative framework in which to test such hypotheses. Here, we show that a reinforcement learning agent that uses an episodic memory cache to find rewards in maze environments can forget a large percentage of older memories without any performance impairments, if they utilize mnemonic representations that contain structural information about space. Moreover, we show that some forgetting can actually provide a benefit in performance compared to agents with unbounded memories. Our analyses of the agents show that forgetting reduces the influence of outdated information and states which are not frequently visited on the policies produced by the episodic control system. These results support the hypothesis that some degree of forgetting can be beneficial for decision making, which can help to explain why the brain forgets more than is required by capacity limitations.