Publications

Efficient Data-Driven MPC for Demand Response of Commercial Buildings
Marie-Christine Par'e
Vasken Dermardiros
Model predictive control (MPC) has been shown to significantly improve the energy efficiency of buildings while maintaining thermal comfort.… (voir plus) Data-driven approaches based on neural networks have been proposed to facilitate system modelling. However, such approaches are generally nonconvex and result in computationally intractable optimization problems. In this work, we design a readily implementable energy management method for small commercial buildings. We then leverage our approach to formulate a real-time demand bidding strategy. We propose a data-driven and mixed-integer convex MPC which is solved via derivative-free optimization given a limited computational time of 5 minutes to respect operational constraints. We consider rooftop unit heating, ventilation, and air conditioning systems with discrete controls to accurately model the operation of most commercial buildings. Our approach uses an input convex recurrent neural network to model the thermal dynamics. We apply our approach in several demand response (DR) settings, including a demand bidding, a time-of-use, and a critical peak rebate program. Controller performance is evaluated on a state-of-the-art building simulation. The proposed approach improves thermal comfort while reducing energy consumption and cost through DR participation, when compared to other data-driven approaches or a set-point controller.
Graphylo: A deep learning approach for predicting regulatory DNA and RNA sites from whole-genome multiple alignments
Dongjoon Lim
Changhyun Baek
MiRGraph: A transformer-based feature learning approach to identify microRNA-target interactions by integrating heterogeneous graph network and sequence information
Pei Liu
Ying Liu
Jiawei Luo
MicroRNAs (miRNAs) play a crucial role in the regulation of gene expression by targeting specific mRNAs. They can function as both tumor sup… (voir plus)pressors and oncogenes depending on the specific miRNA and its target genes. Detecting miRNA-target interactions (MTIs) is critical for unraveling the complex mechanisms of gene regulation and identifying therapeutic targets and diagnostic markers. There is currently a lack of MTIs prediction method that simultaneously performs feature learning on heterogeneous graph network and sequence information. To improve the prediction performance of MTIs, we present a novel transformer-based multi-view feature learning method, named MiRGraph. It consists of two main modules for learning the sequence and heterogeneous graph network, respectively. For learning the sequence-based feaature embedding, we utilize the mature miRNA sequence and the complete 3’UTR sequence of the target mRNAs to encode sequence features. Specifically, a transformer-based CNN (TransCNN) module is designed for miRNAs and genes respectively to extract their personalized sequence features. For learning the network-based feature embedding, we utilize a heterogeneous graph transformer (HGT) module to extract the relational and structural information in a heterogeneous graph consisting of miRNA-miRNA, gene-gene and miRNA-target interactions. We learn the TransCNN and HGT modules end-to-end by utilizing a feedforward network, which takes the combined embedded features of the miRNA-gene pair to predict MTIs. Comparisons with other existing MTIs prediction methods illustrates the superiority of MiRGraph under standard criteria. In a case study on breast cancer, we identified plausible target genes of an oncomir hsa-MiR-122-5p and plausible miRNAs that regulate the oncogene BRCA1.
Black-Box Access is Insufficient for Rigorous AI Audits
Stephen Casper
Carson Ezell
Charlotte Siegmann
Noam Kolt
Taylor Lynn Curtis
Benjamin Bucknall
Andreas A. Haupt
Kevin Wei
J'er'emy Scheurer
Marius Hobbhahn
Lee Sharkey
Satyapriya Krishna
Marvin von Hagen
Silas Alberti
Alan Chan
Qinyi Sun
Michael Gerovitch
David Bau
Max Tegmark
Dylan Hadfield-Menell
External audits of AI systems are increasingly recognized as a key mechanism for AI governance. The effectiveness of an audit, however, depe… (voir plus)nds on the degree of system access granted to auditors. Recent audits of state-of-the-art AI systems have primarily relied on black-box access, in which auditors can only query the system and observe its outputs. However, white-box access to the system's inner workings (e.g., weights, activations, gradients) allows an auditor to perform stronger attacks, more thoroughly interpret models, and conduct fine-tuning. Meanwhile, outside-the-box access to its training and deployment information (e.g., methodology, code, documentation, hyperparameters, data, deployment details, findings from internal evaluations) allows for auditors to scrutinize the development process and design more targeted evaluations. In this paper, we examine the limitations of black-box audits and the advantages of white- and outside-the-box audits. We also discuss technical, physical, and legal safeguards for performing these audits with minimal security risks. Given that different forms of access can lead to very different levels of evaluation, we conclude that (1) transparency regarding the access and methods used by auditors is necessary to properly interpret audit results, and (2) white- and outside-the-box access allow for substantially more scrutiny than black-box access alone.
Human-Centered AI
Jean-Louis Denis
Maria Luciana Axente
Atsuo Kishimoto
Neighbor-Aware Calibration of Segmentation Networks with Penalty-Based Constraints
Balamurali Murugesan
Sukesh Adiga Vasudeva
Bingyuan Liu
Ismail Ben Ayed
Jose Dolz
Ensuring reliable confidence scores from deep neural networks is of paramount significance in critical decision-making systems, particularly… (voir plus) in real-world domains such as healthcare. Recent literature on calibrating deep segmentation networks has resulted in substantial progress. Nevertheless, these approaches are strongly inspired by the advancements in classification tasks, and thus their uncertainty is usually modeled by leveraging the information of individual pixels, disregarding the local structure of the object of interest. Indeed, only the recent Spatially Varying Label Smoothing (SVLS) approach considers pixel spatial relationships across classes, by softening the pixel label assignments with a discrete spatial Gaussian kernel. In this work, we first present a constrained optimization perspective of SVLS and demonstrate that it enforces an implicit constraint on soft class proportions of surrounding pixels. Furthermore, our analysis shows that SVLS lacks a mechanism to balance the contribution of the constraint with the primary objective, potentially hindering the optimization process. Based on these observations, we propose NACL (Neighbor Aware CaLibration), a principled and simple solution based on equality constraints on the logit values, which enables to control explicitly both the enforced constraint and the weight of the penalty, offering more flexibility. Comprehensive experiments on a wide variety of well-known segmentation benchmarks demonstrate the superior calibration performance of the proposed approach, without affecting its discriminative power. Furthermore, ablation studies empirically show the model agnostic nature of our approach, which can be used to train a wide span of deep segmentation networks.
Deep Learning Model Reuse in the HuggingFace Community: Challenges, Benefit and Trends
Mina Taraghi
Gianolli Dorcelus
Armstrong Foundjem
Florian Tambon
The ubiquity of large-scale Pre-Trained Models (PTMs) is on the rise, sparking interest in model hubs, and dedicated platforms for hosting P… (voir plus)TMs. Despite this trend, a comprehensive exploration of the challenges that users encounter and how the community leverages PTMs remains lacking. To address this gap, we conducted an extensive mixed-methods empirical study by focusing on discussion forums and the model hub of HuggingFace, the largest public model hub. Based on our qualitative analysis, we present a taxonomy of the challenges and benefits associated with PTM reuse within this community. We then conduct a quantitative study to track model-type trends and model documentation evolution over time. Our findings highlight prevalent challenges such as limited guidance for beginner users, struggles with model output comprehensibility in training or inference, and a lack of model understanding. We also identified interesting trends among models where some models maintain high upload rates despite a decline in topics related to them. Additionally, we found that despite the introduction of model documentation tools, its quantity has not increased over time, leading to difficulties in model comprehension and selection among users. Our study sheds light on new challenges in reusing PTMs that were not reported before and we provide recommendations for various stakeholders involved in PTM reuse.
Probabilistic Mobility Load Balancing for Multi-band 5G and Beyond Networks
Saria Al Laham
Di Wu
Ekram Hossain
Beyond Predictive Algorithms in Child Welfare
Erina Seh-Young Moon
Erin Moon
Devansh Saxena
Shion Guha
Temperature-dependent Spike-ACE2 interaction of Omicron subvariants is associated with viral transmission
Mehdi Benlarbi
Shilei Ding
Étienne Bélanger
Alexandra Tauzin
Raphael Poujol
Halima Medjahed
Omar El Ferri
Yuxia Bo
Catherine Bourassa
Judith Fafard
Marzena Pazgier
Inès Levade
Cameron Abrams
Marceline Côté
Andrés Finzi
The continued evolution of SARS-CoV-2 requires persistent monitoring of its subvariants. Omicron subvariants are responsible for the vast ma… (voir plus)jority of SARS-CoV-2 infections worldwide, with XBB and BA.2.86 sublineages representing more than 90% of circulating strains as of January 2024. In this study, we characterized the functional properties of Spike glycoproteins from BA.2.75, CH.1.1, DV.7.1, BA.4/5, BQ.1.1, XBB, XBB.1, XBB.1.16, XBB.1.5, FD.1.1, EG.5.1, HK.3 BA.2.86 and JN.1. We tested their capacity to evade plasma-mediated recognition and neutralization, ACE2 binding, their susceptibility to cold inactivation, Spike processing, as well as the impact of temperature on Spike-ACE2 interaction. We found that compared to the early wild-type (D614G) strain, most Omicron subvariants Spike glycoproteins evolved to escape recognition and neutralization by plasma from individuals who received a fifth dose of bivalent (BA.1 or BA.4/5) mRNA vaccine and improve ACE2 binding, particularly at low temperatures. Moreover, BA.2.86 had the best affinity for ACE2 at all temperatures tested. We found that Omicron subvariants Spike processing is associated with their susceptibility to cold inactivation. Intriguingly, we found that Spike-ACE2 binding at low temperature was significantly associated with growth rates of Omicron subvariants in humans. Overall, we report that Spikes from newly emerged Omicron subvariants are relatively more stable and resistant to plasma-mediated neutralization, present improved affinity for ACE2 which is associated, particularly at low temperatures, with their growth rates.
Visibility into AI Agents
Alan Chan
Carson Ezell
Max Kaufmann
Kevin Wei
Lewis Hammond
Herbie Bradley
Emma Bluemke
Nitarshan Rajkumar
Noam Kolt
Lennart Heim
Markus Anderljung
Connectome-based reservoir computing with the conn2res toolbox
Laura E. Suárez
Agoston Mihalik
Filip Milisav
Kenji Marshall
Mingze Li
Petra E. Vértes
Bratislav Mišić