Publications

Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia
Sameer Sardaar
Bill Qi
Alexandre Dionne-Laporte
Guy. A. Rouleau
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
Issam Hadj Laradji
We propose a stochastic variant of the classical Polyak step-size (Polyak, 1987) commonly used in the subgradient method. Although computing… (voir plus) the Polyak step-size requires knowledge of the optimal function values, this information is readily available for typical modern machine learning applications. Consequently, the proposed stochastic Polyak step-size (SPS) is an attractive choice for setting the learning rate for stochastic gradient descent (SGD). We provide theoretical convergence guarantees for SGD equipped with SPS in different settings, including strongly convex, convex and non-convex functions. Furthermore, our analysis results in novel convergence guarantees for SGD with a constant step-size. We show that SPS is particularly effective when training over-parameterized models capable of interpolating the training data. In this setting, we prove that SPS enables SGD to converge to the true solution at a fast rate without requiring the knowledge of any problem-dependent constants or additional computational overhead. We experimentally validate our theoretical results via extensive experiments on synthetic and real datasets. We demonstrate the strong performance of SGD with SPS compared to state-of-the-art optimization methods when training over-parameterized models.
The Geometry of Sign Gradient Descent
Lukas Balles
Fabian Pedregosa
Minimax Theorem for Latent Games or: How I Learned to Stop Worrying about Mixed-Nash and Love Neural Nets
D. Balduzzi
Wojciech M. Czarnecki
M. Garnelo
Yoram Bachrach
Adversarial training, a special case of multi-objective optimization, is an increasingly useful tool in machine learning. For example, two-p… (voir plus)layer zero-sum games are important for generative modeling (GANs) and for mastering games like Go or Poker via self-play. A classic result in Game Theory states that one must mix strategies, as pure equilibria may not exist. Surprisingly, machine learning practitioners typically train a \emph{single} pair of agents -- instead of a pair of mixtures -- going against Nash's principle. Our main contribution is a notion of limited-capacity-equilibrium for which, as capacity grows, optimal agents -- not mixtures -- can learn increasingly expressive and realistic behaviors. We define \emph{latent games}, a new class of game where agents are mappings that transform latent distributions. Examples include generators in GANs, which transform Gaussian noise into distributions on images, and StarCraft II agents, which transform sampled build orders into policies. We show that minimax equilibria in latent games can be approximated by a \emph{single} pair of dense neural networks. Finally, we apply our latent game approach to solve differentiable Blotto, a game with an infinite strategy space.
Minimax Theorem for Latent Games or: How I Learned to Stop Worrying about Mixed-Nash and Love Neural Nets
D. Balduzzi
Wojciech M. Czarnecki
M. Garnelo
Yoram Bachrach
Adversarial training, a special case of multi-objective optimization, is an increasingly useful tool in machine learning. For example, two-p… (voir plus)layer zero-sum games are important for generative modeling (GANs) and for mastering games like Go or Poker via self-play. A classic result in Game Theory states that one must mix strategies, as pure equilibria may not exist. Surprisingly, machine learning practitioners typically train a \emph{single} pair of agents -- instead of a pair of mixtures -- going against Nash's principle. Our main contribution is a notion of limited-capacity-equilibrium for which, as capacity grows, optimal agents -- not mixtures -- can learn increasingly expressive and realistic behaviors. We define \emph{latent games}, a new class of game where agents are mappings that transform latent distributions. Examples include generators in GANs, which transform Gaussian noise into distributions on images, and StarCraft II agents, which transform sampled build orders into policies. We show that minimax equilibria in latent games can be approximated by a \emph{single} pair of dense neural networks. Finally, we apply our latent game approach to solve differentiable Blotto, a game with an infinite strategy space.
Saliency Enhancement using Gradient Domain Edges Merging
Sofiane Wozniak Achiche
Alexandre Duperre
Maxime Raison
In recent years, there has been a rapid progress in solving the binary problems in computer vision, such as edge detection which finds the b… (voir plus)oundaries of an image and salient object detection which finds the important object in an image. This progress happened thanks to the rise of deep-learning and convolutional neural networks (CNN) which allow to extract complex and abstract features. However, edge detection and saliency are still two different fields and do not interact together, although it is intuitive for a human to detect salient objects based on its boundaries. Those features are not well merged in a CNN because edges and surfaces do not intersect since one feature represents a region while the other represents boundaries between different regions. In the current work, the main objective is to develop a method to merge the edges with the saliency maps to improve the performance of the saliency. Hence, we developed the gradient-domain merging (GDM) which can be used to quickly combine the image-domain information of salient object detection with the gradient-domain information of the edge detection. This leads to our proposed saliency enhancement using edges (SEE) with an average improvement of the F-measure of at least 3.4 times higher on the DUT-OMRON dataset and 6.6 times higher on the ECSSD dataset, when compared to competing algorithm such as denseCRF and BGOF. The SEE algorithm is split into 2 parts, SEE-Pre for preprocessing and SEE-Post pour postprocessing.
Meta-learning framework with applications to zero-shot time-series forecasting
Boris Oreshkin
Dmitri Carpov
Can meta-learning discover generic ways of processing time series (TS) from a diverse dataset so as to greatly improve generalization on new… (voir plus) TS coming from different datasets? This work provides positive evidence to this using a broad meta-learning framework which we show subsumes many existing meta-learning algorithms. Our theoretical analysis suggests that residual connections act as a meta-learning adaptation mechanism, generating a subset of task-specific parameters based on a given TS input, thus gradually expanding the expressive power of the architecture on-the-fly. The same mechanism is shown via linearization analysis to have the interpretation of a sequential update of the final linear layer. Our empirical results on a wide range of data emphasize the importance of the identified meta-learning mechanisms for successful zero-shot univariate forecasting, suggesting that it is viable to train a neural network on a source TS dataset and deploy it on a different target TS dataset without retraining, resulting in performance that is at least as good as that of state-of-practice univariate forecasting models.
Provably efficient reconstruction of policy networks
Recent research has shown that learning poli-cies parametrized by large neural networks can achieve significant success on challenging reinf… (voir plus)orcement learning problems. However, when memory is limited, it is not always possible to store such models exactly for inference, and com-pressing the policy into a compact representation might be necessary. We propose a general framework for policy representation, which reduces this problem to finding a low-dimensional embedding of a given density function in a separable inner product space. Our framework allows us to de-rive strong theoretical guarantees, controlling the error of the reconstructed policies. Such guaran-tees are typically lacking in black-box models, but are very desirable in risk-sensitive tasks. Our experimental results suggest that the reconstructed policies can use less than 10%of the number of parameters in the original networks, while incurring almost no decrease in rewards.
Representation of Reinforcement Learning Policies in Reproducing Kernel Hilbert Spaces.
We propose a general framework for policy representation for reinforcement learning tasks. This framework involves finding a low-dimensional… (voir plus) embedding of the policy on a reproducing kernel Hilbert space (RKHS). The usage of RKHS based methods allows us to derive strong theoretical guarantees on the expected return of the reconstructed policy. Such guarantees are typically lacking in black-box models, but are very desirable in tasks requiring stability. We conduct several experiments on classic RL domains. The results confirm that the policies can be robustly embedded in a low-dimensional space while the embedded policy incurs almost no decrease in return.
Cybersanté : les tentatives juridiques pour objectiver un domaine en pleine effervescence
Vincent Gautrais
Resting-state connectivity stratifies premanifest Huntington’s disease by longitudinal cognitive decline rate
Pablo Polosecki
Eduardo Castro
Dorian Pustina
John H. Warner
Andrew Wood
Cristina Sampaio
Guillermo Cecchi
Autism spectrum disorder
Catherine Lord
Traolach S. Brugha
Tony Charman
James Cusack
Thomas Frazier
Emily J. H. Jones
Rebecca M. Jones
Andrew Pickles
Matthew W. State
Julie Lounds Taylor
Jeremy Veenstra-VanderWeele