Publications

AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages
Shamsuddeen Hassan Muhammad
Idris Abdulmumin
Abinew Ayele
Nedjma OUSIDHOUM
Seid Muhie Yimam
Ibrahim Ahmad
Meriem Beloucif
Saif Mohammad
Sebastian Ruder
Oumaima Hourrane
Alipio Jorge
Pavel Brazdil
Felermino Ali
Davis David
Salomey Osei
Bello Shehu-Bello
Falalu Lawan
Tajuddeen Gwadabe
Samuel Rutunda … (voir 7 de plus)
Tadesse Belay
Wendimu Baye Messelle
Hailu Balcha
Sisay Adugna Chala
Hagos Gebremichael
Bernard Opoku
Stephen Arthur
AI Agents Learn to Trust
Ardavan S. Nobandegani
T. Shultz
AmbieGen: A Search-based Framework for Autonomous Systems Testing
Dmytro Humeniuk
Giuliano Antoniol
ArK: Augmented Reality with Knowledge Emergent Infrastructure
Qiuyuan Huang
J. Park
Abhinav Gupta
Pan Lu
Paul N. Bennett
Ran Gong
Subhojit Som
Baolin Peng
Owais Khan Mohammed
Yejin Choi
Jianfeng Gao
Despite the growing adoption of mixed reality and interactive AI, it remains challenging to generate high-quality 2D/3D scenes in unseen env… (voir plus)ironments. Typically, an AI agent requires collecting extensive training data for every new task, which can be costly or impossible for many domains. In this study, we develop an infinite agent that learns to transfer knowledge memory from general foundation models (e.g., GPT4, DALLE) to novel domains or scenarios for scene understanding and generation in physical or virtual worlds. Central to our approach is the interactive emerging mechanism, dubbed Augmented Reality with Knowledge Emergent Infrastructure (ArK) , which leverages knowledge-memory to generate scenes in unseen physical worlds and virtual reality environments. The knowledge interactive emergent ability (Figure 1) is demonstrated through i) micro-action of cross-modality : in multi-modality models to collect a large amount of relevant knowledge-memory data for each interaction task (e.g., unseen scene understanding) from the physical reality; and ii) macro-behavior of reality-agnostic : in mix-reality environments to improve interactions that tailor to different characterized roles, target variables, collaborative information, and so on. We validate ArK’s effectiveness in scene generation and editing tasks and show that our ArK approach, combined with large foundation models, significantly improves the quality of generated 2D/3D scenes, highlighting its potential in applications such as metaverse and gaming simulation.
Augmenting Transit Network Design Algorithms with Deep Learning
Andrew Holliday
This paper considers the use of deep learning models to enhance optimization algorithms for transit network design. Transit network design i… (voir plus)s the problem of determining routes for transit vehicles that minimize travel time and operating costs, while achieving full service coverage. State-of-the-art meta-heuristic search algorithms give good results on this problem, but can be very time-consuming. In contrast, neural networks can learn sub-optimal but fast-to-compute heuristics based on large amounts of data. Combining these approaches, we develop a fast graph neural network model for transit planning, and use it to initialize state-of-the-art search algorithms. We show that this combination can improve the results of these algorithms on a variety of metrics by up to 17%, without increasing their run time; or they can match the quality of the original algorithms while reducing the computing time by up to a factor of 50.
Auxiliary Losses for Learning Generalizable Concept-based Models
Ivaxi Sheth
Bayes-MIL: A New Probabilistic Perspective on Attention-based Multiple Instance Learning for Whole Slide Images
Yufei Cui
Ziquan Liu
Xiangyu Liu
Cong Wang
Tei-Wei Kuo
Chun Jason Xue
Antoni B. Chan
Multiple instance learning (MIL) is a popular weakly-supervised learning model on the whole slide image (WSI) for AI-assisted pathology diag… (voir plus)nosis. The recent advance in attention-based MIL allows the model to find its region-of-interest (ROI) for interpretation by learning the attention weights for image patches of WSI slides. However, we empirically find that the interpretability of some related methods is either untrustworthy as the principle of MIL is violated or unsatisfactory as the high-attention regions are not consistent with experts’ annotations. In this paper, we propose Bayes-MIL to address the problem from a probabilistic perspective. The induced patch-level uncertainty is proposed as a new measure of MIL interpretability, which outperforms previous methods in matching doctors annotations. We design a slide-dependent patch regularizer (SDPR) for the attention, imposing constraints derived from the MIL assumption, on the attention distribution. SDPR explicitly constrains the model to generate correct attention values. The spatial information is further encoded by an approximate convolutional conditional random field (CRF), for better interpretability. Experimental results show Bayes-MIL outperforms the related methods in patch-level and slide-level metrics and provides much better interpretable ROI on several large-scale WSI datasets.
Bayes-MIL: A New Probabilistic Perspective on Attention-based Multiple Instance Learning for Whole Slide Images
Yufei Cui
Ziquan Liu
Xiangyu Liu
Cong Wang
Tei-Wei Kuo
Chun Jason Xue
Antoni Bert Chan
Multiple instance learning (MIL) is a popular weakly-supervised learning model on the whole slide image (WSI) for AI-assisted pathology diag… (voir plus)nosis. The recent advance in attention-based MIL allows the model to find its region-of-interest (ROI) for interpretation by learning the attention weights for image patches of WSI slides. However, we empirically find that the interpretability of some related methods is either untrustworthy as the principle of MIL is violated or unsatisfactory as the high-attention regions are not consistent with experts’ annotations. In this paper, we propose Bayes-MIL to address the problem from a probabilistic perspective. The induced patch-level uncertainty is proposed as a new measure of MIL interpretability, which outperforms previous methods in matching doctors annotations. We design a slide-dependent patch regularizer (SDPR) for the attention, imposing constraints derived from the MIL assumption, on the attention distribution. SDPR explicitly constrains the model to generate correct attention values. The spatial information is further encoded by an approximate convolutional conditional random field (CRF), for better interpretability. Experimental results show Bayes-MIL outperforms the related methods in patch-level and slide-level metrics and provides much better interpretable ROI on several large-scale WSI datasets.
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Anh Tuan Luu
Xavier Bresson
Benchmarking State-Merging Algorithms for Learning Regular Languages.
Adil Soubki
Jeffrey Heinz
François Coste
Faissal Ouardi
Bigger, Better, Faster: Human-level Atari with human-level efficiency
Max Schwarzer
Johan Samir Obando Ceron
Rishabh Agarwal
We introduce a value-based RL agent, which we call BBF, that achieves super-human performance in the Atari 100K benchmark. BBF relies on sca… (voir plus)ling the neural networks used for value estimation, as well as a number of other design choices that enable this scaling in a sample-efficient manner. We conduct extensive analyses of these design choices and provide insights for future work. We end with a discussion about updating the goalposts for sample-efficient RL research on the ALE. We make our code and data publicly available at https://github.com/google-research/google-research/tree/master/bigger_better_faster.
Block-State Transformers
Mahan Fathi
Jonathan Pilault
Orhan Firat
Ross Goroshin