Portrait de Pascal Vincent

Pascal Vincent

Membre industriel principal
Professeur agrégé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Chercheur scientifique, Facebook AI Research (FAIR) Montréal

Biographie

Pascal Vincent est chercheur à Meta (FAIR, Fundamental IA Research), professeur associé au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal, membre fondateur de Mila – Institut québécois d’intelligence artificielle et chercheur associé à l'Institut canadien de recherches avancées (CIFAR, programme Apprentissage automatique, apprentissage biologique).

Ses recherches sur les principes et les algorithmes de l'apprentissage par représentation l'ont amené à développer plusieurs idées fondamentales qui sont devenues des éléments clés du succès des méthodes d'apprentissage profond. Parmi ses travaux les plus influents, il est coauteur de l'article fondateur sur les modèles de langage neuronaux « A Neural Probabilistic Language Model » (Bengio et al., 2013), qui a jeté les bases de tous les modèles de langage fondés sur les réseaux de neurones artificiels. Son travail sur les auto-encodeurs de débruitage (Vincent et al., 2008, 2010) a été le premier à proposer la tâche prétexte de remplir des blancs artificiellement introduits dans le but d'apprendre des représentations utiles dans n'importe quelle modalité, un précurseur de ce que l'on appelle aujourd'hui « l'apprentissage autosupervisé ». En 2011, il a développé le principe du denoising score matching (P. Vincent, « A connection between score matching and denoising autoencoders », Neural Computation, 2011), qui est maintenant couramment utilisé pour former des modèles génératifs basés sur la diffusion. Ses recherches actuelles se concentrent sur de nouvelles théories et de nouveaux algorithmes pour l'apprentissage de la représentation afin de permettre une généralisation robuste en dehors de la distribution.

Étudiants actuels

Doctorat - Université de Montréal

Publications

Implicit Regularization in Deep Learning: A View from Function Space
Aristide Baratin
Thomas George
César Laurent
We approach the problem of implicit regularization in deep learning from a geometrical viewpoint. We highlight a possible regularization eff… (voir plus)ect induced by a dynamical alignment of the neural tangent features introduced by Jacot et al, along a small number of task-relevant directions. By extrapolating a new analysis of Rademacher complexity bounds in linear models, we propose and study a new heuristic complexity measure for neural networks which captures this phenomenon, in terms of sequences of tangent kernel classes along in the learning trajectories.
Implicit Regularization in Deep Learning: A View from Function Space
Aristide Baratin
Thomas George
César Laurent
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Alexandre Lacoste
Recent advances in variational inference enable the modelling of highly structured joint distributions, but are limited in their capacity to… (voir plus) scale to the high-dimensional setting of stochastic neural networks. This limitation motivates a need for scalable parameterizations of the noise generation process, in a manner that adequately captures the dependencies among the various parameters. In this work, we address this need and present the Kronecker Flow, a generalization of the Kronecker product to invertible mappings designed for stochastic neural networks. We apply our method to variational Bayesian neural networks on predictive tasks, PAC-Bayes generalization bound estimation, and approximate Thompson sampling in contextual bandits. In all setups, our methods prove to be competitive with existing methods and better than the baselines.
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
The success of adversarial formulations in machine learning has brought renewed motivation for smooth games. In this work, we focus on the c… (voir plus)lass of stochastic Hamiltonian methods and provide the first convergence guarantees for certain classes of stochastic smooth games. We propose a novel unbiased estimator for the stochastic Hamiltonian gradient descent (SHGD) and highlight its benefits. Using tools from the optimization literature we show that SHGD converges linearly to the neighbourhood of a stationary point. To guarantee convergence to the exact solution, we analyze SHGD with a decreasing step-size and we also present the first stochastic variance reduced Hamiltonian method. Our results provide the first global non-asymptotic last-iterate convergence guarantees for the class of stochastic unconstrained bilinear games and for the more general class of stochastic games that satisfy a "sufficiently bilinear" condition, notably including some non-convex non-concave problems. We supplement our analysis with experiments on stochastic bilinear and sufficiently bilinear games, where our theory is shown to be tight, and on simple adversarial machine learning formulations.
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Alexandre Lacoste
Recent advances in variational inference enable the modelling of highly structured joint distributions, but are limited in their capacity to… (voir plus) scale to the high-dimensional setting of stochastic neural networks. This limitation motivates a need for scalable parameterizations of the noise generation process, in a manner that adequately captures the dependencies among the various parameters. In this work, we address this need and present the Kronecker Flow, a generalization of the Kronecker product to invertible mappings designed for stochastic neural networks. We apply our method to variational Bayesian neural networks on predictive tasks, PAC-Bayes generalization bound estimation, and approximate Thompson sampling in contextual bandits. In all setups, our methods prove to be competitive with existing methods and better than the baselines.
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Guillaume Alain
Amjad Almahairi
Christof Angermüller
Nicolas Ballas
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
Arnaud Bergeron
J. Bergstra
Valentin Bisson
Josh Bleecher Snyder
Nicolas Bouchard
Nicolas Boulanger-Lewandowski
Xavier Bouthillier
Alexandre De Brébisson
Olivier Breuleux … (voir 92 de plus)
pierre luc carrier
Kyunghyun Cho
Jan Chorowski
Paul F. Christiano
Tim Cooijmans
Marc-Alexandre Côté
Myriam Côté
Yann Dauphin
Olivier Delalleau
Julien Demouth
Guillaume Desjardins
Sander Dieleman
Laurent Dinh
M'elanie Ducoffe
Vincent Dumoulin
Dumitru Erhan
Ziye Fan
Orhan Firat
Mathieu Germain
Xavier Glorot
Ian J. Goodfellow
Matthew Graham
Caglar Gulcehre
Philippe Hamel
Iban Harlouchet
Jean-philippe Heng
Balázs Hidasi
Sina Honari
Arjun Jain
S'ebastien Jean
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Alex Lamb
Pascal Lamblin
Eric P. Larsen
César Laurent
S. Lee
Simon-mark Lefrancois
Simon Lemieux
Nicholas Léonard
Zhouhan Lin
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
Pierre-Antoine Manzagol
Olivier Mastropietro
R. McGibbon
Roland Memisevic
Bart van Merriënboer
Vincent Michalski
Mehdi Mirza
Alberto Orlandi
Razvan Pascanu
Mohammad Pezeshki
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
Francois Savard
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Dmitriy Serdyuk
Samira Shabanian
Etienne Simon
Sigurd Spieckermann
S. Subramanyam
Jakub Sygnowski
Jérémie Tanguay
Gijs van Tulder
Joseph P. Turian
Sebastian Urban
Francesco Visin
Harm de Vries
David Warde-Farley
Dustin J. Webb
M. Willson
Kelvin Xu
Lijun Xue
Li Yao
Saizheng Zhang
Ying Zhang
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (voir plus)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Guillaume Alain
Amjad Almahairi
Christof Angermüller
Nicolas Ballas
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
Arnaud Bergeron
J. Bergstra
Valentin Bisson
Josh Bleecher Snyder
Nicolas Bouchard
Nicolas Boulanger-Lewandowski
Xavier Bouthillier
Alexandre De Brébisson
Olivier Breuleux … (voir 92 de plus)
pierre luc carrier
Kyunghyun Cho
Jan Chorowski
Paul F. Christiano
Tim Cooijmans
Marc-Alexandre Côté
Myriam Côté
Yann Dauphin
Olivier Delalleau
Julien Demouth
Guillaume Desjardins
Sander Dieleman
Laurent Dinh
M'elanie Ducoffe
Vincent Dumoulin
Dumitru Erhan
Ziye Fan
Orhan Firat
Mathieu Germain
Xavier Glorot
Ian G Goodfellow
Matthew Graham
Caglar Gulcehre
Philippe Hamel
Iban Harlouchet
Jean-philippe Heng
Balázs Hidasi
Sina Honari
Arjun Jain
S'ebastien Jean
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Alex Lamb
Pascal Lamblin
Eric Larsen
César Laurent
S. Lee
Simon-mark Lefrancois
Simon Lemieux
Nicholas Léonard
Zhouhan Lin
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
Pierre-Antoine Manzagol
Olivier Mastropietro
R. McGibbon
Roland Memisevic
Bart van Merriënboer
Vincent Michalski
Mehdi Mirza
Alberto Orlandi
Razvan Pascanu
Mohammad Pezeshki
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
Francois Savard
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Dmitriy Serdyuk
Samira Shabanian
Etienne Simon
Sigurd Spieckermann
S. Subramanyam
Jakub Sygnowski
Jérémie Tanguay
Gijs van Tulder
Joseph P. Turian
Sebastian Urban
Francesco Visin
Harm de Vries
David Warde-Farley
Dustin J. Webb
M. Willson
Kelvin Xu
Lijun Xue
Li Yao
Saizheng Zhang
Ying Zhang
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (voir plus)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.