Portrait de Emma Frejinger

Emma Frejinger

Membre académique associé
Professeure agrégée, Université de Montréal, Département d'informatique et de recherche opérationnelle

Biographie

Emma Frejinger est professeure agrégée au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal, où elle est aussi titulaire d'une chaire de recherche du Canada et d'une chaire industrielle financée par la Compagnie des chemins de fer nationaux du Canada. Ses recherches sont axées sur les applications et se concentrent sur des combinaisons novatrices de méthodologies issues de l'apprentissage automatique et de la recherche opérationnelle pour résoudre des problèmes de prise de décision à grande échelle. Emma Frejinger possède une vaste expérience de travail avec l'industrie, en particulier dans le secteur des transports, où elle a dirigé des projets de recherche collaborative. Depuis 2018, elle est également conseillère scientifique pour IVADO Labs, où elle contribue au développement de solutions d'IA pour l'industrie de la chaîne d'approvisionnement. Avant de se joindre à l'Université de Montréal, en 2013, elle était membre du corps professoral de l'Institut royal de technologie KTH, en Suède. Elle est titulaire d'un doctorat en mathématiques de l'École polytechnique fédérale de Lausanne (EPFL), en Suisse.

Étudiants actuels

Doctorat - Université de Montréal
Superviseur⋅e principal⋅e :

Publications

A logistics provider’s profit maximization facility location problem with random utility maximizing followers
David Pinzon Ulloa
Bernard Gendron
Reinforcement learning for freight booking control problems
Justin Dumouchelle
One-shot Learning for MIPs with SOS1 Constraints
Charly Robinson La Rocca
Jean-François Cordeau
Decoupling regularization from the action space
Sobhan Mohammadpour
Regularized reinforcement learning (RL), particularly the entropy-regularized kind, has gained traction in optimal control and inverse RL. W… (voir plus)hile standard unregularized RL methods remain unaffected by changes in the number of actions, we show that it can severely impact their regularized counterparts. This paper demonstrates the importance of decoupling the regularizer from the action space: that is, to maintain a consistent level of regularization regardless of how many actions are involved to avoid over-regularization. Whereas the problem can be avoided by introducing a task-specific temperature parameter, it is often undesirable and cannot solve the problem when action spaces are state-dependent. In the state-dependent action context, different states with varying action spaces are regularized inconsistently. We introduce two solutions: a static temperature selection approach and a dynamic counterpart, universally applicable where this problem arises. Implementing these changes improves performance on the DeepMind control suite in static and dynamic temperature regimes and a biological design task.
Maximum entropy GFlowNets with soft Q-learning
Sobhan Mohammadpour
Emmanuel Bengio
Pseudo-random Instance Generators in C++ for Deterministic and Stochastic Multi-commodity Network Design Problems
Eric P. Larsen
Serge Bisaillon
Jean-François Cordeau
Network design problems constitute an important family of combinatorial optimization problems for which numerous exact and heuristic algorit… (voir plus)hms have been developed over the last few decades. Two central problems in this family are the multi-commodity, capacitated, fixed charge network design problem (MCFNDP) and its stochastic counterpart, the two-stage MCFNDP with recourse. These are standard problems that often serve as work benches for devising and testing models and algorithms in stylized but close-to-realistic settings. The purpose of this paper is to introduce two flexible, high-speed generators capable of simulating a wide range of settings for both the deterministic and stochastic MCFNDPs. We hope that, by facilitating systematic experimentation with new and larger sets of instances, these generators will lead to a more thorough assessment of the performance achieved by exact and heuristic solution methods in both deterministic and stochastic settings. We also hope that making these generators available will promote the reproducibility and comparability of published research.
Optimising Electric Vehicle Charging Station Placement Using Advanced Discrete Choice Models
Steven Lamontagne
Bernard Gendron
Miguel F. Anjos
Ribal Atallah
D'epartement d'informatique et de recherche op'erationnelle
U. Montr'eal
S. O. Mathematics
U. Edinburgh
Institut de Recherche d'Hydro-Qu'ebec
We present a new model for finding the optimal placement of electric vehicle charging stations across a multiperiod time frame so as to maxi… (voir plus)mise electric vehicle adoption. Via the use of stochastic discrete choice models and user classes, this work allows for a granular modelling of user attributes and their preferences in regard to charging station characteristics. We adopt a simulation approach and precompute error terms for each option available to users for a given number of scenarios. This results in a bilevel optimisation model that is, however, intractable for all but the simplest instances. Our major contribution is a reformulation into a maximum covering model, which uses the precomputed error terms to calculate the users covered by each charging station. This allows solutions to be found more efficiently than for the bilevel formulation. The maximum covering formulation remains intractable in some instances, so we propose rolling horizon, greedy, and greedy randomised adaptive search procedure heuristics to obtain good-quality solutions more efficiently. Extensive computational results are provided, and they compare the maximum covering formulation with the current state of the art for both exact solutions and the heuristic methods. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This work was supported by Hydro-Québec and the Natural Sciences and Engineering Research Council of Canada [Discovery grant 2017-06054; Collaborative Research and Development Grant CRDPJ 536757–19]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoc.2022.0185 .
A Survey of Contextual Optimization Methods for Decision Making under Uncertainty
Utsav Sadana
Abhilash Chenreddy
Alexandre Forel
Thibaut Vidal
Scope Restriction for Scalable Real-Time Railway Rescheduling: An Exploratory Study
Erik L. Nygren
Christian Eichenberger
With the aim to stimulate future research, we describe an exploratory study of a railway rescheduling problem. A widely used approach in pra… (voir plus)ctice and state of the art is to decompose these complex problems by geographical scope. Instead, we propose defining a core problem that restricts a rescheduling problem in response to a disturbance to only trains that need to be rescheduled, hence restricting the scope in both time and space. In this context, the difficulty resides in defining a scoper that can predict a subset of train services that will be affected by a given disturbance. We report preliminary results using the Flatland simulation environment that highlights the potential and challenges of this idea. We provide an extensible playground open-source implementation based on the Flatland railway environment and Answer-Set Programming.
The load planning and sequencing problem for double-stack trains
Moritz Ruf
Jean-François Cordeau
Predicting Tactical Solutions to Operational Planning Problems under Imperfect Information
Eric P. Larsen
Sébastien Lachapelle
This paper offers a methodological contribution at the intersection of machine learning and operations research. Namely, we propose a method… (voir plus)ology to quickly predict expected tactical descriptions of operational solutions (TDOSs). The problem we address occurs in the context of two-stage stochastic programming, where the second stage is demanding computationally. We aim to predict at a high speed the expected TDOS associated with the second-stage problem, conditionally on the first-stage variables. This may be used in support of the solution to the overall two-stage problem by avoiding the online generation of multiple second-stage scenarios and solutions. We formulate the tactical prediction problem as a stochastic optimal prediction program, whose solution we approximate with supervised machine learning. The training data set consists of a large number of deterministic operational problems generated by controlled probabilistic sampling. The labels are computed based on solutions to these problems (solved independently and offline), employing appropriate aggregation and subselection methods to address uncertainty. Results on our motivating application on load planning for rail transportation show that deep learning models produce accurate predictions in very short computing time (milliseconds or less). The predictive accuracy is close to the lower bounds calculated based on sample average approximation of the stochastic prediction programs.
Predicting Tactical Solutions to Operational Planning Problems under Imperfect Information
Eric P. Larsen
Sébastien Lachapelle
This paper offers a methodological contribution at the intersection of machine learning and operations research. Namely, we propose a method… (voir plus)ology to quickly predict expected tactical descriptions of operational solutions (TDOSs). The problem we address occurs in the context of two-stage stochastic programming, where the second stage is demanding computationally. We aim to predict at a high speed the expected TDOS associated with the second-stage problem, conditionally on the first-stage variables. This may be used in support of the solution to the overall two-stage problem by avoiding the online generation of multiple second-stage scenarios and solutions. We formulate the tactical prediction problem as a stochastic optimal prediction program, whose solution we approximate with supervised machine learning. The training data set consists of a large number of deterministic operational problems generated by controlled probabilistic sampling. The labels are computed based on solutions to these problems (solved independently and offline), employing appropriate aggregation and subselection methods to address uncertainty. Results on our motivating application on load planning for rail transportation show that deep learning models produce accurate predictions in very short computing time (milliseconds or less). The predictive accuracy is close to the lower bounds calculated based on sample average approximation of the stochastic prediction programs.