Portrait de Alexandre Drouin

Alexandre Drouin

Membre industriel associé
Professeur adjoint, Université Laval, Département de génie électrique et de génie informatique
Chercheur scientifique, ServiceNow

Biographie

Alexandre Drouin est chercheur en intelligence artificielle chez ServiceNow Research à Montréal et professeur associé au Département d’informatique et de génie logiciel de l’Université Laval. Il dirige une équipe de recherche qui explore l’utilisation de l’apprentissage automatique pour la prise de décision dans des environnements dynamiques complexes. Son intérêt de recherche principal est la prise de décision causale, dont le but est de répondre à des questions interventionnelles et contrefactuelles en tenant compte des sources d’incertitude potentielles, par exemple l’ambiguïté des relations causales sous-jacentes à un système et l’effet de variables latentes. Il s’intéresse aussi aux modèles de prédiction probabiliste pour les séries temporelles et à leur utilisation pour prédire l’effet à long terme d’actions.

Il est détenteur d’un doctorat en informatique de l’Université Laval, qu’il a reçu pour son travail sur le développement d’algorithmes d’apprentissage automatique pour la découverte de biomarqueurs en génomique et leur application au problème de résistance aux antibiotiques.

Étudiants actuels

Doctorat
Superviseur⋅e principal⋅e :
Stagiaire de recherche - Université de Montréal
Superviseur⋅e principal⋅e :
Doctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Doctorat - Université Laval
Superviseur⋅e principal⋅e :

Publications

In Search of Robust Measures of Generalization
Brady Neal
Nitarshan Rajkumar
Ethan Caballero
Linbo Wang
Daniel M. Roy
One of the principal scientific challenges in deep learning is explaining generalization, i.e., why the particular way the community now tra… (voir plus)ins networks to achieve small training error also leads to small error on held-out data from the same population. It is widely appreciated that some worst-case theories -- such as those based on the VC dimension of the class of predictors induced by modern neural network architectures -- are unable to explain empirical performance. A large volume of work aims to close this gap, primarily by developing bounds on generalization error, optimization error, and excess risk. When evaluated empirically, however, most of these bounds are numerically vacuous. Focusing on generalization bounds, this work addresses the question of how to evaluate such bounds empirically. Jiang et al. (2020) recently described a large-scale empirical study aimed at uncovering potential causal relationships between bounds/measures and generalization. Building on their study, we highlight where their proposed methods can obscure failures and successes of generalization measures in explaining generalization. We argue that generalization measures should instead be evaluated within the framework of distributional robustness.
Synbols: Probing Learning Algorithms with Synthetic Datasets
Alexandre Lacoste
Pau Rodr'iguez
Frédéric Branchaud-charron
Parmida Atighehchian
Massimo Caccia
Issam Hadj Laradji
Matt P. Craddock
David Vazquez