Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Leveraging Machine Learning Techniques in Intrusion Detection Systems for Internet of Things
As the Internet of Things (IoT) continues to expand, ensuring the security of connected devices has become increasingly critical. Traditiona… (see more)l Intrusion Detection Systems (IDS) often fall short in managing the dynamic and large-scale nature of IoT networks. This paper explores how Machine Learning (ML) and Deep Learning (DL) techniques can significantly enhance IDS performance in IoT environments. We provide a thorough overview of various IDS deployment strategies and categorize the types of intrusions common in IoT systems. A range of ML methods -- including Support Vector Machines, Naive Bayes, K-Nearest Neighbors, Decision Trees, and Random Forests -- are examined alongside advanced DL models such as LSTM, CNN, Autoencoders, RNNs, and Deep Belief Networks. Each technique is evaluated based on its accuracy, efficiency, and suitability for real-world IoT applications. We also address major challenges such as high false positive rates, data imbalance, encrypted traffic analysis, and the resource constraints of IoT devices. In addition, we highlight the emerging role of Generative AI and Large Language Models (LLMs) in improving threat detection, automating responses, and generating intelligent security policies. Finally, we discuss ethical and privacy concerns, underscoring the need for responsible and transparent implementation. This paper aims to provide a comprehensive framework for developing adaptive, intelligent, and secure IDS solutions tailored for the evolving landscape of IoT.