Doob's Lagrangian: A Sample-Efficient Variational Approach to Transition Path Sampling
Yuanqi Du
Michael Plainer
Rob Brekelmans
Chenru Duan
Frank No'e
Carla P. Gomes
Alán Aspuru-Guzik
Rare event sampling in dynamical systems is a fundamental problem arising in the natural sciences, which poses significant computational cha… (see more)llenges due to an exponentially large space of trajectories. For settings where the dynamical system of interest follows a Brownian motion with known drift, the question of conditioning the process to reach a given endpoint or desired rare event is definitively answered by Doob's h-transform. However, the naive estimation of this transform is infeasible, as it requires simulating sufficiently many forward trajectories to estimate rare event probabilities. In this work, we propose a variational formulation of Doob's h-transform as an optimization problem over trajectories between a given initial point and the desired ending point. To solve this optimization, we propose a simulation-free training objective with a model parameterization that imposes the desired boundary conditions by design. Our approach significantly reduces the search space over trajectories and avoids expensive trajectory simulation and inefficient importance sampling estimators which are required in existing methods. We demonstrate the ability of our method to find feasible transition paths on real-world molecular simulation and protein folding tasks.
Efficient line search for optimizing Area Under the ROC Curve in gradient descent
Jadon Fowler
Receiver Operating Characteristic (ROC) curves are useful for evaluation in binary classification and changepoint detection, but difficult t… (see more)o use for learning since the Area Under the Curve (AUC) is piecewise constant (gradient zero almost everywhere). Recently the Area Under Min (AUM) of false positive and false negative rates has been proposed as a differentiable surrogate for AUC. In this paper we study the piecewise linear/constant nature of the AUM/AUC, and propose new efficient path-following algorithms for choosing the learning rate which is optimal for each step of gradient descent (line search), when optimizing a linear model. Remarkably, our proposed line search algorithm has the same log-linear asymptotic time complexity as gradient descent with constant step size, but it computes a complete representation of the AUM/AUC as a function of step size. In our empirical study of binary classification problems, we verify that our proposed algorithm is fast and exact; in changepoint detection problems we show that the proposed algorithm is just as accurate as grid search, but faster.
Finite Sample Complexity Analysis of Binary Segmentation
Binary segmentation is the classic greedy algorithm which recursively splits a sequential data set by optimizing some loss or likelihood fun… (see more)ction. Binary segmentation is widely used for changepoint detection in data sets measured over space or time, and as a sub-routine for decision tree learning. In theory it should be extremely fast for
Long-term outcomes of critically ill patients with hematological malignancies: what is the impact of the coronavirus disease 2019 pandemic? Author's reply
Laveena Munshi
Sangeeta Mehta
ProtSCAPE: Mapping the landscape of protein conformations in molecular dynamics
Siddharth Viswanath
Dhananjay Bhaskar
David R. Johnson
João Felipe Rocha
Egbert Castro
Jackson Grady
Alex T. Grigas
Michael Perlmutter
Corey S. O'Hern
Understanding the dynamic nature of protein structures is essential for comprehending their biological functions. While significant progress… (see more) has been made in predicting static folded structures, modeling protein motions on microsecond to millisecond scales remains challenging. To address these challenges, we introduce a novel deep learning architecture, Protein Transformer with Scattering, Attention, and Positional Embedding (ProtSCAPE), which leverages the geometric scattering transform alongside transformer-based attention mechanisms to capture protein dynamics from molecular dynamics (MD) simulations. ProtSCAPE utilizes the multi-scale nature of the geometric scattering transform to extract features from protein structures conceptualized as graphs and integrates these features with dual attention structures that focus on residues and amino acid signals, generating latent representations of protein trajectories. Furthermore, ProtSCAPE incorporates a regression head to enforce temporally coherent latent representations.
SOAK: Same/Other/All K-fold cross-validation for estimating similarity of patterns in data subsets
Gabrielle Thibault
C. S. Bodine
Paul Nelson Arellano
Alexander F Shenkin
Olivia J. Lindly
In many real-world applications of machine learning, we are interested to know if it is possible to train on the data that we have gathered … (see more)so far, and obtain accurate predictions on a new test data subset that is qualitatively different in some respect (time period, geographic region, etc). Another question is whether data subsets are similar enough so that it is beneficial to combine subsets during model training. We propose SOAK, Same/Other/All K-fold cross-validation, a new method which can be used to answer both questions. SOAK systematically compares models which are trained on different subsets of data, and then used for prediction on a fixed test subset, to estimate the similarity of learnable/predictable patterns in data subsets. We show results of using SOAK on six new real data sets (with geographic/temporal subsets, to check if predictions are accurate on new subsets), 3 image pair data sets (subsets are different image types, to check that we get smaller prediction error on similar images), and 11 benchmark data sets with predefined train/test splits (to check similarity of predefined splits).
Spatial Action Unit Cues for Interpretable Deep Facial Expression Recognition
Soufiane Belharbi
Alessandro Lameiras Koerich
Simon Bacon
Eric Granger
Although state-of-the-art classifiers for facial expression recognition (FER) can achieve a high level of accuracy, they lack interpretabili… (see more)ty, an important feature for end-users. Experts typically associate spatial action units (AUs) from a codebook to facial regions for the visual interpretation of expressions. In this paper, the same expert steps are followed. A new learning strategy is proposed to explicitly incorporate AU cues into classifier training, allowing to train deep interpretable models. During training, this AU codebook is used, along with the input image expression label, and facial landmarks, to construct a AU heatmap that indicates the most discriminative image regions of interest w.r.t the facial expression. This valuable spatial cue is leveraged to train a deep interpretable classifier for FER. This is achieved by constraining the spatial layer features of a classifier to be correlated with AU heatmaps. Using a composite loss, the classifier is trained to correctly classify an image while yielding interpretable visual layer-wise attention correlated with AU maps, simulating the expert decision process. Our strategy only relies on image class expression for supervision, without additional manual annotations. Our new strategy is generic, and can be applied to any deep CNN- or transformer-based classifier without requiring any architectural change or significant additional training time. Our extensive evaluation on two public benchmarks RAF-DB, and AffectNet datasets shows that our proposed strategy can improve layer-wise interpretability without degrading classification performance. In addition, we explore a common type of interpretable classifiers that rely on class activation mapping (CAM) methods, and show that our approach can also improve CAM interpretability.
Spatial Action Unit Cues for Interpretable Deep Facial Expression Recognition
Soufiane Belharbi
Alessandro L. Koerich
Simon Bacon
Eric Granger
Although state-of-the-art classifiers for facial expression recognition (FER) can achieve a high level of accuracy, they lack interpretabili… (see more)ty, an important feature for end-users. Experts typically associate spatial action units (AUs) from a codebook to facial regions for the visual interpretation of expressions. In this paper, the same expert steps are followed. A new learning strategy is proposed to explicitly incorporate AU cues into classifier training, allowing to train deep interpretable models. During training, this AU codebook is used, along with the input image expression label, and facial landmarks, to construct a AU heatmap that indicates the most discriminative image regions of interest w.r.t the facial expression. This valuable spatial cue is leveraged to train a deep interpretable classifier for FER. This is achieved by constraining the spatial layer features of a classifier to be correlated with AU heatmaps. Using a composite loss, the classifier is trained to correctly classify an image while yielding interpretable visual layer-wise attention correlated with AU maps, simulating the expert decision process. Our strategy only relies on image class expression for supervision, without additional manual annotations. Our new strategy is generic, and can be applied to any deep CNN- or transformer-based classifier without requiring any architectural change or significant additional training time. Our extensive evaluation on two public benchmarks RAF-DB, and AffectNet datasets shows that our proposed strategy can improve layer-wise interpretability without degrading classification performance. In addition, we explore a common type of interpretable classifiers that rely on class activation mapping (CAM) methods, and show that our approach can also improve CAM interpretability.
Latent Representation Learning for Multimodal Brain Activity Translation
Arman Afrasiyabi
Dhananjay Bhaskar
Erica Lindsey Busch
Laurent Caplette
Rahul Singh
Nicholas B Turk-Browne
Neuroscience employs diverse neuroimaging techniques, each offering distinct insights into brain activity, from electrophysiological recordi… (see more)ngs such as EEG, which have high temporal resolution, to hemodynamic modalities such as fMRI, which have increased spatial precision. However, integrating these heterogeneous data sources remains a challenge, which limits a comprehensive understanding of brain function. We present the Spatiotemporal Alignment of Multimodal Brain Activity (SAMBA) framework, which bridges the spatial and temporal resolution gaps across modalities by learning a unified latent space free of modality-specific biases. SAMBA introduces a novel attention-based wavelet decomposition for spectral filtering of electrophysiological recordings, graph attention networks to model functional connectivity between functional brain units, and recurrent layers to capture temporal autocorrelations in brain signal. We show that the training of SAMBA, aside from achieving translation, also learns a rich representation of brain information processing. We showcase this classify external stimuli driving brain activity from the representation learned in hidden layers of SAMBA, paving the way for broad downstream applications in neuroscience research and clinical contexts.
Latent Representation Learning for Multimodal Brain Activity Translation
Arman Afrasiyabi
Dhananjay Bhaskar
Erica L. Busch
Laurent Caplette
Rahul Singh
Nicholas B. Turk-Browne
Neuroscience employs diverse neuroimaging techniques, each offering distinct insights into brain activity, from electrophysiological recordi… (see more)ngs such as EEG, which have high temporal resolution, to hemodynamic modalities such as fMRI, which have increased spatial precision. However, integrating these heterogeneous data sources remains a challenge, which limits a comprehensive understanding of brain function. We present the Spatiotemporal Alignment of Multimodal Brain Activity (SAMBA) framework, which bridges the spatial and temporal resolution gaps across modalities by learning a unified latent space free of modality-specific biases. SAMBA introduces a novel attention-based wavelet decomposition for spectral filtering of electrophysiological recordings, graph attention networks to model functional connectivity between functional brain units, and recurrent layers to capture temporal autocorrelations in brain signal. We show that the training of SAMBA, aside from achieving translation, also learns a rich representation of brain information processing. We showcase this classify external stimuli driving brain activity from the representation learned in hidden layers of SAMBA, paving the way for broad downstream applications in neuroscience research and clinical contexts.
Longitudinal bi-criteria framework for assessing national healthcare responses to pandemic outbreaks
Adel Guitouni
Nabil Belacel
Belaid Moa
Munire Erman
Halim Abdul
Any2Policy: Learning Visuomotor Policy with Any-Modality
Yichen Zhu
Zhicai Ou
Feifei Feng
Humans can communicate and observe media with different modalities, such as texts, sounds, and images. For robots to be more generalizable e… (see more)mbodied agents, they should be capable of following instructions and perceiving the world with adaptation to diverse modalities. Current robotic learning methodologies often focus on single-modal task specification and observation, thereby limiting their ability to process rich multi-modal information. Addressing this limitation, we present an end-to-end general-purpose multi-modal system named Any-to-Policy Embodied Agents. This system empowers robots to handle tasks using various modalities, whether in combinations like text-image, audio-image, text-point cloud, or in isolation. Our innovative approach involves training a versatile modality network that adapts to various inputs and connects with policy networks for effective control. Because of the lack of existing multi-modal robotics datasets for evaluation, we assembled a comprehensive real-world dataset encompassing 30 robotic tasks. Each task in this dataset is richly annotated across multiple modalities, providing a robust foundation for assessment. We conducted extensive validation of our proposed unified modality embodied agent using several simulation benchmarks, including Franka Kitchen, Meta-World, and Maniskill2, as well as in our real-world settings. Our experiments showcase the promising capability of building embodied agents that can adapt to diverse multi-modal in a unified framework.