Extracting Person Names from User Generated Text: Named-Entity Recognition for Combating Human Trafficking
Yifei Li
Pratheeksha Nair
Kellin Pelrine
Feeding What You Need by Understanding What You Learned
Xiaoqiang Wang
Fangli Xu
Bo Long
Siliang Tang
Lingfei Wu
Few-Shot Pidgin Text Adaptation via Contrastive Fine-Tuning
Ernie Chang
Jesujoba Oluwadara Alabi
Vera Demberg
The surging demand for multilingual dialogue systems often requires a costly labeling process for each language addition. For low resource l… (see more)anguages, human annotators are continuously tasked with the adaptation of resource-rich language utterances for each new domain. However, this prohibitive and impractical process can often be a bottleneck for low resource languages that are still without proper translation systems nor parallel corpus. In particular, it is difficult to obtain task-specific low resource language annotations for the English-derived creoles (e.g. Nigerian and Cameroonian Pidgin). To address this issue, we utilize the pretrained language models i.e. BART which has shown great potential in language generation/understanding – we propose to finetune the BART model to generate utterances in Pidgin by leveraging the proximity of the source and target languages, and utilizing positive and negative examples in constrastive training objectives. We collected and released the first parallel Pidgin-English conversation corpus in two dialogue domains and showed that this simple and effective technique is suffice to yield impressive results for English-to-Pidgin generation, which are two closely-related languages.
Findings of the WMT’22 Shared Task on Large-Scale Machine Translation Evaluation for African Languages
Md Mahfuz Ibn Alam
Antonios Anastasopoulos
Akshita Bhagia
Marta R. Costa-jussa
Jesse Dodge
Fahim Faisal
Christian Federmann
Natalia N. Fedorova
Francisco S. Guzm'an
Sergey Koshelev
Jean Maillard
Vukosi Marivate
Jonathan Mbuya
Alexandre Mourachko
Safiyyah Saleem
Holger Schwenk
Guillaume Wenzek
We present the results of the WMT’22 SharedTask on Large-Scale Machine Translation Evaluation for African Languages. The shared taskinclud… (see more)ed both a data and a systems track, alongwith additional innovations, such as a focus onAfrican languages and extensive human evaluation of submitted systems. We received 14system submissions from 8 teams, as well as6 data track contributions. We report a largeprogress in the quality of translation for Africanlanguages since the last iteration of this sharedtask: there is an increase of about 7.5 BLEUpoints across 72 language pairs, and the average BLEU scores went from 15.09 to 22.60.
Flexible Diffusion Modeling of Long Videos
William Harvey
Saeid Naderiparizi
Vaden Masrani
Christian Dietrich Weilbach
Frank Wood
We present a framework for video modeling based on denoising diffusion probabilistic models that produces long-duration video completions in… (see more) a variety of realistic environments. We introduce a generative model that can at test-time sample any arbitrary subset of video frames conditioned on any other subset and present an architecture adapted for this purpose. Doing so allows us to efficiently compare and optimize a variety of schedules for the order in which frames in a long video are sampled and use selective sparse and long-range conditioning on previously sampled frames. We demonstrate improved video modeling over prior work on a number of datasets and sample temporally coherent videos over 25 minutes in length. We additionally release a new video modeling dataset and semantically meaningful metrics based on videos generated in the CARLA autonomous driving simulator.
S5 Framework: A Review of Self-Supervised Shared Semantic Space Optimization for Multimodal Zero-Shot Learning
Clst
Yonatan Bisk
Ari Holtzman
Jesse Thomason
Ja-740 cob
Joyce Chai
Angeliki Lapata
Jonathan Lazaridou
Alek-742 May
Nicolas sandr Nisnevich
P. PintoJoseph
Turian
Ting Chen
Simon Kornblith
Mohammad Norouzi
Yen-Chun Chen
Linjie Li
Licheng Yu
Ahmed El … (see 89 more)
Faisal Kholy
Zhe Ahmed
Yu Gan
Cheng
Zihan Dai
Hanxiao Liu
Quoc V. Le
Jia Deng
Wei Dong
Richard Socher
Li-Jia Li
K. Liu
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Jesse Dodge
Maarten Sap
Ana Marasovic
Gabriel Agnew
Dirk Ilharco
Groeneveld Matt
Li Dong
Nan Yang
Wenhui Wang
Furu Wei
Yu Liu
Jianfeng Wang
Ming Gao
Zhou
Xiaoyi Dong
Jia Bao
Tinglu Zhang
Dongdong
Weiming Chen
Lu Zhang
Dong Yuan
Fang Chen
Da-cheng Juan
Chuntian Lu
Zhen Li
Futang Peng
Aleksei Timofeev
Yi-Ting Chen
Yaxi Gao
Tom
Andrew Duerig
Tomkins Sujith
Ravi
Lukasz Kaiser
Aidan N. Gomez
Noam M. Shazeer
Niki Vaswani
Llion Parmar
Jones Jakob
Uszko-850
Alex G. Kendall
Yarin Gal
Roberto Cipolla
Salman H. Khan
Muzammal Naseer
Munawar Hayat
Waqas Zamir
Fahad Shahbaz
Khan
Ranjay Krishna
Yuke Zhu
Oliver Groth
Justin John-867
Kenji Hata
Joshua Kravitz
Stephanie Chen
Mike Lewis
Yinhan Liu
Marjan Naman Goyal
Abdelrahman Ghazvininejad
Omer Mohamed
Levy
Luke Zettlemoyer
Bohan Li
Hao Zhou
Jun-Tao He
Mingxuan Wang
Liunian Harold
Mark Li
Da Yatskar
Yin
Cho-Jui
Kai-Wei Chang
Visualbert
In this review, we aim to inspire research into 001 S elf-S upervised S hared S emantic S pace ( S5 ) 002 multimodal learning problems. We e… (see more)quip non-003 expert researchers with a framework of in-004 formed modeling decisions via an extensive 005 literature review, an actionable modeling check-006 list, as well as a series of novel zero-shot eval-007 uation tasks. The core idea for our S5 check-008 list lies in learning contextual multimodal in-009 teractions at various granularity levels via a 010 shared Transformer encoder with a denoising 011 loss term, which is also regularized by a con-012 trastive loss term to induce a semantic align-013 ment prior on the contextual embedding space. 014 Essentially, we aim to model human concept 015 understanding and thus learn to “put a name to 016 a face”. This ultimately enables interpretable 017 zero-shot S5 generalization on a variety of 018 novel downstream tasks. In summary, this re-019 view provides sufficient background and ac-020 tionable strategies for training cutting-edge S5 021 multimodal networks. 022
GANSpiration: Balancing Targeted and Serendipitous Inspiration in User Interface Design with Style-Based Generative Adversarial Network
Mohammad Amin Mozaffari
Xinyuan Zhang
Jinghui Cheng
Inspiration from design examples plays a crucial role in the creative process of user interface design. However, current tools and technique… (see more)s that support inspiration usually only focus on example browsing with limited user control or similarity-based example retrieval, leading to undesirable design outcomes such as focus drift and design fixation. To address these issues, we propose the GANSpiration approach that suggests design examples for both targeted and serendipitous inspiration, leveraging a style-based Generative Adversarial Network. A quantitative evaluation revealed that the outputs of GANSpiration-based example suggestion approaches are relevant to the input design, and at the same time include diverse instances. A user study with professional UI/UX practitioners showed that the examples suggested by our approach serve as viable sources of inspiration for overall design concepts and specific design elements. Overall, our work paves the road of using advanced generative machine learning techniques in supporting the creative design practice.
A general class of surrogate functions for stable and efficient reinforcement learning
Sharan Vaswani
Olivier Bachem
Simone Totaro
Robert Müller
Shivam Garg
Matthieu Geist
Marlos C. Machado
GitHub repositories with links to academic papers: Public access, traceability, and evolution
Supatsara Wattanakriengkrai
Bodin Chinthanet
Hideaki Hata
Raula Gaikovina Kula
Christoph Treude
Kenichi Matsumoto
Goal-driven optimization of single-neuron properties in artificial networks reveals regularization role of neural diversity and adaptation in the brain
Victor Geadah
Stefan Horoi
Giancarlo Kerg
Neurons in the brain have rich and adaptive input-output properties. Features such as diverse f-I curves and spike frequency adaptation are … (see more)known to place single neurons in optimal coding regimes when facing changing stimuli. Yet, it is still unclear how brain circuits exploit single neuron flexibility, and how network-level requirements may have shaped such cellular function. To answer this question, a multi-scaled approach is needed where the computations of single neurons and of neural circuits must be considered as a complete system. In this work, we use artificial neural networks to systematically investigate single neuron input-output adaptive mechanisms, optimized in an end-to-end fashion. Throughout the optimization process, each neuron has the liberty to modify its nonlinear activation function, parametrized to mimic f-I curves of biological neurons, and to learn adaptation strategies to modify activation functions in real-time during a task. We find that such networks show much-improved robustness to noise and changes in input statistics. Importantly, we find that this procedure recovers precise coding strategies found in biological neurons, such as gain scaling and fractional order differentiation/integration. Using tools from dynamical systems theory, we analyze the role of these emergent single neuron properties and argue that neural diversity and adaptation plays an active regularization role that enables neural circuits to optimally propagate information across time.
Goal-driven optimization of single-neuron properties in artificial networks reveals regularization role of neural diversity and adaptation in the brain
Victor Geadah
Stefan Horoi
Giancarlo Kerg
Neurons in the brain have rich and adaptive input-output properties. Features such as diverse f-I curves and spike frequency adaptation are … (see more)known to place single neurons in optimal coding regimes when facing changing stimuli. Yet, it is still unclear how brain circuits exploit single neuron flexibility, and how network-level requirements may have shaped such cellular function. To answer this question, a multi-scaled approach is needed where the computations of single neurons and of neural circuits must be considered as a complete system. In this work, we use artificial neural networks to systematically investigate single neuron input-output adaptive mechanisms, optimized in an end-to-end fashion. Throughout the optimization process, each neuron has the liberty to modify its nonlinear activation function, parametrized to mimic f-I curves of biological neurons, and to learn adaptation strategies to modify activation functions in real-time during a task. We find that such networks show much-improved robustness to noise and changes in input statistics. Importantly, we find that this procedure recovers precise coding strategies found in biological neurons, such as gain scaling and fractional order differentiation/integration. Using tools from dynamical systems theory, we analyze the role of these emergent single neuron properties and argue that neural diversity and adaptation plays an active regularization role that enables neural circuits to optimally propagate information across time.
Gradient Descent Is Optimal Under Lower Restricted Secant Inequality And Upper Error Bound
Charles Guille-Escuret
Baptiste Goujaud
Adam Ibrahim
The study of first-order optimization is sensitive to the assumptions made on the objective functions. These assumptions induce complexity c… (see more)lasses which play a key role in worst-case analysis, including the fundamental concept of algorithm optimality. Recent work argues that strong convexity and smoothness—popular assumptions in literature—lead to a pathological definition of the condition number. Motivated by this result, we focus on the class of functions satisfying a lower restricted secant inequality and an upper error bound. On top of being robust to the aforementioned pathological behavior and including some non-convex functions, this pair of conditions displays interesting geometrical properties. In particular, the necessary and sufficient conditions to interpolate a set of points and their gradients within the class can be separated into simple conditions on each sampled gradient. This allows the performance estimation problem (PEP) to be solved analytically, leading to a lower bound on the convergence rate that proves gradient descent to be exactly optimal on this class of functions among all first-order algorithms.