We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
The intrinsic functional connectome can reveal how a lifetime of learning and lived experience is represented in the functional architecture… (see more) of the aging brain. We investigated whether network dedifferentiation, a hallmark of brain aging, reflects a global shift in network dynamics, or comprises network-specific changes that reflect the changing landscape of aging cognition. We implemented a novel multi-faceted strategy involving multi-echo fMRI acquisition and de-noising, individualized cortical parcellation, and multivariate (gradient and edge-level) functional connectivity methods. Twenty minutes of resting-state fMRI data and cognitive assessments were collected in younger (n=181) and older (n=120) adults. Dimensionality in the BOLD signal was lower for older adults, consistent with global network dedifferentiation. Functional connectivity gradients were largely age-invariant. In contrast, edge-level connectivity showed widespread changes with age, revealing discrete, network-specific dedifferentiation patterns. Visual and somatosensory regions were more integrated within the functional connectome; default and frontoparietal regions showed greater coupling; and the dorsal attention network was less differentiated from transmodal regions. Associations with cognition suggest that the formation and preservation of integrated, large-scale brain networks supports complex cognitive abilities. However, into older adulthood, the connectome is dominated by large-scale network disintegration, global dedifferentiation and network-specific dedifferentiation associated with age-related cognitive change.
FusionRetro: Molecule Representation Fusion via Reaction Graph for Retrosynthetic Planning
Retrosynthetic planning is a fundamental problem in drug discovery and organic chemistry, which aims to find a complete multi-step syntheti… (see more)c route from a set of starting materials to the target molecule, determining crucial process flow in chemical production. Existing approaches combine single-step retrosynthesis models and search algorithms to find synthetic routes. However, these approaches generally consider the two pieces in a decoupled manner, taking only the product as the input to predict the reactants per planning step and largely ignoring the important context information from other intermediates along the synthetic route. In this work, we perform a series of experiments to identify the limitations of this decoupled view and propose a novel retrosynthesis framework that also exploits context information for retrosynthetic planning. We view synthetic routes as reaction graphs, and propose to incorporate the context by three principled steps: encode molecules into embeddings, aggregate information over routes, and readout to predict reactants. The whole framework can be efficiently optimized in an end-to-end fashion. Comprehensive experiments show that by fusing in context information over routes, our model sig-nificantly improves the performance of retrosyn-thetic planning over baselines that are not context-aware, especially for long synthetic routes.
FusionRetro: Molecule Representation Fusion via In-Context Learning for Retrosynthetic Planning
Learning from multiple related tasks by knowledge sharing and transfer has become increasingly relevant over the last two decades. In order … (see more)to successfully transfer information from one task to another, it is critical to understand the similarities and differences between the domains. In this paper, we introduce the notion of \emph{performance gap}, an intuitive and novel measure of the distance between learning tasks. Unlike existing measures which are used as tools to bound the difference of expected risks between tasks (e.g.,
Efficient computation of optimal transport distance between distributions is of growing importance in data science. Sinkhorn-based methods a… (see more)re currently the state-of-the-art for such computations, but require O(n2) computations. In addition, Sinkhorn-based methods commonly use an Euclidean ground distance between datapoints. However, with the prevalence of manifold structured scientific data, it is often desirable to consider geodesic ground distance. Here, we tackle both issues by proposing Geodesic Sinkhorn—based on diffusing a heat kernel on a manifold graph. Notably, Geodesic Sinkhorn requires only O(n log n) computation, as we approximate the heat kernel with Chebyshev polynomials based on the sparse graph Laplacian. We apply our method to the computation of barycenters of several distributions of high dimensional single cell data from patient samples undergoing chemotherapy. In particular, we define the barycentric distance as the distance between two such barycenters. Using this definition, we identify an optimal transport distance and path associated with the effect of treatment on cellular data.
2023-01-01
2023 IEEE 33rd International Workshop on Machine Learning for Signal Processing (MLSP) (published)
Tackling the most pressing problems for humanity, such as the climate crisis and the threat of global pandemics, requires accelerating the p… (see more)ace of scientific discovery. While science has traditionally relied...