Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Automatic subphenotyping from electronic health records (EHRs)provides numerous opportunities to understand diseases with unique subgroups a… (see more)nd enhance personalized medicine for patients. However, existing machine learning algorithms either focus on specific diseases for better interpretability or produce coarse-grained phenotype topics without considering nuanced disease patterns. In this study, we propose a guided topic model, MixEHR-Nest, to infer sub-phenotype topics from thousands of disease using multi-modal EHR data. Specifically, MixEHR-Nest detects multiple subtopics from each phenotype topic, whose prior is guided by the expert-curated phenotype concepts such as Phenotype Codes (PheCodes) or Clinical Classification Software (CCS) codes. We evaluated MixEHR-Nest on two EHR datasets: (1) the MIMIC-III dataset consisting of over 38 thousand patients from intensive care unit (ICU) from Beth Israel Deaconess Medical Center (BIDMC) in Boston, USA; (2) the healthcare administrative database PopHR, comprising 1.3 million patients from Montreal, Canada. Experimental results demonstrate that MixEHR-Nest can identify subphenotypes with distinct patterns within each phenotype, which are predictive for disease progression and severity. Consequently, MixEHR-Nest distinguishes between type 1 and type 2 diabetes by inferring subphenotypes using CCS codes, which do not differentiate these two subtype concepts. Additionally, MixEHR-Nest not only improved the prediction accuracy of short-term mortality of ICU patients and initial insulin treatment in diabetic patients but also revealed the contributions of subphenotypes. For longitudinal analysis, MixEHR-Nest identified subphenotypes of distinct age prevalence under the same phenotypes, such as asthma, leukemia, epilepsy, and depression. The MixEHR-Nest software is available at GitHub: https://github.com/li-lab-mcgill/MixEHR-Nest.
2024-12-16
Proceedings of the 15th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics (published)
Learning time-series representations for discriminative tasks, such as classification and regression, has been a long-standing challenge in … (see more)the healthcare domain. Current pre-training methods are limited in either unidirectional next-token prediction or randomly masked token prediction. We propose a novel architecture called Bidirectional Timely Generative Pre-trained Transformer (BiTimelyGPT), which pre-trains on biosignals and longitudinal clinical records by both next-token and previous-token prediction in alternating transformer layers. This pre-training task preserves original distribution and data shapes of the time-series. Additionally, the full-rank forward and backward attention matrices exhibit more expressive representation capabilities. Using biosignals and longitudinal clinical records, BiTimelyGPT demonstrates superior performance in predicting neurological functionality, disease diagnosis, and physiological signs. By visualizing the attention heatmap, we observe that the pre-trained BiTimelyGPT can identify discriminative segments from biosignal time-series sequences, even more so after fine-tuning on the task.
2024-11-25
Proceedings of the 9th Machine Learning for Healthcare Conference (published)
In many domains, such as healthcare, time-series data is irregularly sampled with varying intervals between observations. This creates chall… (see more)enges for classical time-series models that require equally spaced data. To address this, we propose a novel time-series Transformer called **Trajectory Generative Pre-trained Transformer (TrajGPT)**. It introduces a data-dependent decay mechanism that adaptively forgets irrelevant information based on clinical context. By interpreting TrajGPT as ordinary differential equations (ODEs), our approach captures continuous dynamics from sparse and irregular time-series data. Experimental results show that TrajGPT, with its time-specific inference approach, accurately predicts trajectories without requiring task-specific fine-tuning.
In many domains, such as healthcare, time-series data is irregularly sampled with varying intervals between observations. This creates chall… (see more)enges for classical time-series models that require equally spaced data. To address this, we propose a novel time-series Transformer called **Trajectory Generative Pre-trained Transformer (TrajGPT)**. It introduces a data-dependent decay mechanism that adaptively forgets irrelevant information based on clinical context. By interpreting TrajGPT as ordinary differential equations (ODEs), our approach captures continuous dynamics from sparse and irregular time-series data. Experimental results show that TrajGPT, with its time-specific inference approach, accurately predicts trajectories without requiring task-specific fine-tuning.
Learning time-series representations for discriminative tasks, such as classification and regression, has been a long-standing challenge in … (see more)the healthcare domain. Current pre-training methods are limited in either unidirectional next-token prediction or randomly masked token prediction. We propose a novel architecture called Bidirectional Timely Generative Pre-trained Transformer (BiTimelyGPT), which pre-trains on biosignals and longitudinal clinical records by both next-token and previous-token prediction in alternating transformer layers. This pre-training task preserves original distribution and data shapes of the time-series. Additionally, the full-rank forward and backward attention matrices exhibit more expressive representation capabilities. Using biosignals and longitudinal clinical records, BiTimelyGPT demonstrates superior performance in predicting neurological functionality, disease diagnosis, and physiological signs. By visualizing the attention heatmap, we observe that the pre-trained BiTimelyGPT can identify discriminative segments from biosignal time-series sequences, even more so after fine-tuning on the task.
Motivation: Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success in Natural Language Processing a… (see more)nd Computer Vision domains. However, the development of PTMs on healthcare time-series data is lagging behind. This underscores the limitations of the existing transformer-based architectures, particularly their scalability to handle large-scale time series and ability to capture long-term temporal dependencies. Methods: In this study, we present Timely Generative Pre-trained Transformer (TimelyGPT). TimelyGPT employs an extrapolatable position (xPos) embedding to encode trend and periodic patterns into time-series representations. It also integrates recurrent attention and temporal convolution modules to effectively capture global-local temporal dependencies. Materials: We evaluated TimelyGPT on two large-scale healthcare time series datasets corresponding to continuous biosignals and irregularly-sampled time series, respectively: (1) the Sleep EDF dataset consisting of over 1.2 billion timesteps; (2) the longitudinal healthcare administrative database PopHR, comprising 489,000 patients randomly sampled from the Montreal population. Results: In forecasting continuous biosignals, TimelyGPT achieves accurate extrapolation up to 6,000 timesteps of body temperature during the sleep stage transition, given a short look-up window (i.e., prompt) containing only 2,000 timesteps. For irregularly-sampled time series, TimelyGPT with a proposed time-specific inference demonstrates high top recall scores in predicting future diagnoses using early diagnostic records, effectively handling irregular intervals between clinical records. Together, we envision TimelyGPT to be useful in various health domains, including long-term patient health state forecasting and patient risk trajectory prediction. Availability: The open-sourced code is available at Github.