Publications

ARGV: 3D genome structure exploration using augmented reality
Chrisostomos Drogaris
Yanlin Zhang
Éric Zhang
Elena Nazarova
Roman Sarrazin-Gendron
Sélik Wilhelm-Landry
Yan Cyr
Jacek Majewski
Jérôme Waldispühl
A long-context RNA foundation model for predicting transcriptome architecture
Benedict Choi
Sean Wang
Aldo Hernández-Corchado
Mohsen Naghipourfar
Arsham Mikaeili Namini
Vijay Ramani
Hamed S. Najafabadi
Hani Goodarzi
Linking DNA sequence to genomic function remains one of the grand challenges in genetics and genomics. Here, we combine large-scale single-m… (see more)olecule transcriptome sequencing of diverse cancer cell lines with cutting-edge machine learning to build LoRNASH, an RNA foundation model that learns how the nucleotide sequence of unspliced pre-mRNA dictates transcriptome architecture—the relative abundances and molecular structures of mRNA isoforms. Owing to its use of the StripedHyena architecture, LoRNASH handles extremely long sequence inputs (∼65 kilobase pairs), allowing for quantitative, zero-shot prediction of all aspects of transcriptome architecture, including isoform abundance, isoform structure, and the impact of DNA sequence variants on transcript structure and abundance. We anticipate that our public data release and proof-of-concept model will accelerate varying aspects of RNA biotechnology. More broadly, we envision the use of LoRNASH as a foundation for fine-tuning of any transcriptome-related downstream prediction task, including cell-type specific gene expression, splicing, and general RNA processing.
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Numerous biological and physical processes can be modeled as systems of interacting entities evolving continuously over time, e.g. the dynam… (see more)ics of communicating cells or physical particles. Learning the dynamics of such systems is essential for predicting the temporal evolution of populations across novel samples and unseen environments. Flow-based models allow for learning these dynamics at the population level - they model the evolution of the entire distribution of samples. However, current flow-based models are limited to a single initial population and a set of predefined conditions which describe different dynamics. We argue that multiple processes in natural sciences have to be represented as vector fields on the Wasserstein manifold of probability densities. That is, the change of the population at any moment in time depends on the population itself due to the interactions between samples. In particular, this is crucial for personalized medicine where the development of diseases and their respective treatment response depend on the microenvironment of cells specific to each patient. We propose Meta Flow Matching (MFM), a practical approach to integrate along these vector fields on the Wasserstein manifold by amortizing the flow model over the initial populations. Namely, we embed the population of samples using a Graph Neural Network (GNN) and use these embeddings to train a Flow Matching model. This gives MFM the ability to generalize over the initial distributions, unlike previously proposed methods. We demonstrate the ability of MFM to improve the prediction of individual treatment responses on a large-scale multi-patient single-cell drug screen dataset.
Pushing the frontiers in climate modelling and analysis with machine learning
Veronika Eyring
William D. Collins
Pierre Gentine
Elizabeth A. Barnes
Marcelo Barreiro
Tom Beucler
Marc Bocquet
Christopher S. Bretherton
Hannah M. Christensen
Katherine Dagon
David John Gagne
David Hall
Dorit Hammerling
Stephan Hoyer
Fernando Iglesias-Suarez
Ignacio Lopez-Gomez
Marie C. McGraw
Gerald A. Meehl
Maria J. Molina
Claire Monteleoni … (see 9 more)
Juliane Mueller
Michael S. Pritchard
Jakob Runge
Philip Stier
Oliver Watt-Meyer
Katja Weigel
Rose Yu
Laure Zanna
Pushing the frontiers in climate modelling and analysis with machine learning
Veronika Eyring
William D. Collins
Pierre Gentine
Elizabeth A. Barnes
Marcelo Barreiro
Tom Beucler
Marc Bocquet
Christopher S. Bretherton
Hannah M. Christensen
Katherine Dagon
David John Gagne
David Hall
Dorit Hammerling
Stephan Hoyer
Fernando Iglesias-Suarez
Ignacio Lopez-Gomez
Marie C. McGraw
Gerald A. Meehl
Maria J. Molina
Claire Monteleoni … (see 9 more)
Juliane Mueller
Michael S. Pritchard
Jakob Runge
Philip Stier
Oliver Watt-Meyer
Katja Weigel
Rose Yu
Laure Zanna
Pushing the frontiers in climate modelling and analysis with machine learning
Veronika Eyring
William D. Collins
Pierre Gentine
Elizabeth A. Barnes
Marcelo Barreiro
Tom Beucler
Marc Bocquet
Christopher S. Bretherton
Hannah M. Christensen
Katherine Dagon
David John Gagne
David Hall
Dorit Hammerling
Stephan Hoyer
Fernando Iglesias-Suarez
Ignacio Lopez-Gomez
Marie C. McGraw
Gerald A. Meehl
Maria J. Molina
Claire Monteleoni … (see 9 more)
Juliane Mueller
Michael S. Pritchard
Jakob Runge
Philip Stier
Oliver Watt-Meyer
Katja Weigel
Rose Yu
Laure Zanna
Pushing the frontiers in climate modelling and analysis with machine learning
Veronika Eyring
William D. Collins
Pierre Gentine
Elizabeth A. Barnes
Marcelo Barreiro
Tom Beucler
Marc Bocquet
Christopher S. Bretherton
Hannah M. Christensen
Katherine Dagon
David John Gagne
David Hall
Dorit Hammerling
Stephan Hoyer
Fernando Iglesias-Suarez
Ignacio Lopez-Gomez
Marie C. McGraw
Gerald A. Meehl
Maria J. Molina
Claire Monteleoni … (see 9 more)
Juliane Mueller
Michael S. Pritchard
Jakob Runge
Philip Stier
Oliver Watt-Meyer
Katja Weigel
Rose Yu
Laure Zanna
Pushing the frontiers in climate modelling and analysis with machine learning
Veronika Eyring
William D. Collins
Pierre Gentine
Elizabeth A. Barnes
Marcelo Barreiro
Tom Beucler
Marc Bocquet
Christopher S. Bretherton
Hannah M. Christensen
Katherine Dagon
David John Gagne
David Hall
Dorit Hammerling
Stephan Hoyer
Fernando Iglesias-Suarez
Ignacio Lopez-Gomez
Marie C. McGraw
Gerald A. Meehl
Maria J. Molina
Claire Monteleoni … (see 9 more)
Juliane Mueller
Michael S. Pritchard
Jakob Runge
Philip Stier
Oliver Watt-Meyer
Katja Weigel
Rose Yu
Laure Zanna
Pushing the frontiers in climate modelling and analysis with machine learning
Veronika Eyring
William D. Collins
Pierre Gentine
Elizabeth A. Barnes
Marcelo Barreiro
Tom Beucler
Marc Bocquet
Christopher S. Bretherton
Hannah M. Christensen
Katherine Dagon
David John Gagne
David Hall
Dorit Hammerling
Stephan Hoyer
Fernando Iglesias-Suarez
Ignacio Lopez-Gomez
Marie C. McGraw
Gerald A. Meehl
Maria J. Molina
Claire Monteleoni … (see 9 more)
Juliane Mueller
Michael S. Pritchard
Jakob Runge
Philip Stier
Oliver Watt-Meyer
Katja Weigel
Rose Yu
Laure Zanna
Development of a Framework for Establishing 'Gold Standard' Outbreak Data from Submitted SARS-CoV-2 Genome Samples
Russell Steele
Philip Abdelmalik
Submitted genomic data for respiratory viruses reflect the emergence and spread of new variants. Although delays in submission limit the uti… (see more)lity of these data for prospective surveillance, they may be useful for evaluating other surveillance sources. However, few studies have investigated the use of these data for evaluating aberration detection in surveillance systems. Our study used a Bayesian online change point detection algorithm (BOCP) to detect increases in the number of submitted genome samples as a means of establishing 'gold standard' dates of outbreak onset in multiple countries. We compared models using different data transformations and parameter values. BOCP detected change points that were not sensitive to different parameter settings. We also found data transformations were essential prior to change point detection. Our study presents a framework for using global genomic submission data to develop 'gold standard' dates about the onset of outbreaks due to new viral variants.
Learning Valid Dual Bounds in Constraint Programming: Boosted Lagrangian Decomposition with Self-Supervised Learning
Swann Bessa
Darius Dabert
Max Bourgeat
Louis-Martin Rousseau
One hundred years of EEG for brain and behaviour research
Faisal Mushtaq
Dominik Welke
Anne Gallagher
Yuri G. Pavlov
Layla Kouara
Jorge Bosch-Bayard
Jasper JF van den Bosch
Mahnaz Arvaneh
Amy R. Bland
Maximilien Chaumon
Cornelius Borck
Xun He
Steven J. Luck
Maro G. Machizawa
Cyril Pernet
Aina Puce
Sidney J. Segalowitz
Christine Rogers
Muhammad Awais
Claudio Babiloni … (see 75 more)
Neil W. Bailey
Sylvain Baillet
Robert C. A. Bendall
Daniel Brady
Maria L. Bringas-Vega
Niko A. Busch
Ana Calzada-Reyes
Armand Chatard
Peter E. Clayson
Michael X. Cohen
Jonathan Cole
Martin Constant
Alexandra Corneyllie
Damien Coyle
Damian Cruse
Ioannis Delis
Arnaud Delorme
Damien Fair
Tiago H. Falk
Matthias Gamer
Giorgio Ganis
Kilian Gloy
Samantha Gregory
Cameron D. Hassall
Katherine E. Hiley
Richard B. Ivry
Michael Jenkins
Jakob Kaiser
Andreas Keil
Robert T. Knight
Silvia Kochen
Boris Kotchoubey
Olave E. Krigolson
Nicolas Langer
Heinrich R. Liesefeld
Sarah Lippé
Raquel E. London
Annmarie MacNamara
Scott Makeig
Welber Marinovic
Eduardo Martínez-Montes
Aleya A. Marzuki
Ryan K. Mathew
Christoph Michel
José d. R. Millán
Mark Mon-Williams
Lilia Morales-Chacón
Richard Naar
Gustav Nilsonne
Guiomar Niso
Erika Nyhus
Robert Oostenveld
Katharina Paul
Walter Paulus
Daniela M. Pfabigan
Gilles Pourtois
Stefan Rampp
Manuel Rausch
Kay Robbins
Paolo M. Rossini
Manuela Ruzzoli
Barbara Schmidt
Magdalena Senderecka
Narayanan Srinivasan
Yannik Stegmann
Paul M. Thompson
Mitchell Valdes-Sosa
Melle J. W. van der Molen
Domenica Veniero
Edelyn Verona
Bradley Voytek
Dezhong Yao
Alan C. Evans
Pedro Valdes-Sosa