We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Overcoming boundaries: Interdisciplinary challenges and opportunities in cognitive neuroscience
Introduction The application of large language models such as generative pre-trained transformers (GPTs) has been promising in medical educa… (see more)tion, and its performance has been tested for different medical exams. This study aims to assess the performance of GPTs in responding to a set of sample questions of short-answer management problems (SAMPs) from the certification exam of the College of Family Physicians of Canada (CFPC). Method Between August 8th and 25th, 2023, we used GPT-3.5 and GPT-4 in five rounds to answer a sample of 77 SAMPs questions from the CFPC website. Two independent certified family physician reviewers scored AI-generated responses twice: first, according to the CFPC answer key (ie, CFPC score), and second, based on their knowledge and other references (ie, Reviews’ score). An ordinal logistic generalised estimating equations (GEE) model was applied to analyse repeated measures across the five rounds. Result According to the CFPC answer key, 607 (73.6%) lines of answers by GPT-3.5 and 691 (81%) by GPT-4 were deemed accurate. Reviewer’s scoring suggested that about 84% of the lines of answers provided by GPT-3.5 and 93% of GPT-4 were correct. The GEE analysis confirmed that over five rounds, the likelihood of achieving a higher CFPC Score Percentage for GPT-4 was 2.31 times more than GPT-3.5 (OR: 2.31; 95% CI: 1.53 to 3.47; p0.001). Similarly, the Reviewers’ Score percentage for responses provided by GPT-4 over 5 rounds were 2.23 times more likely to exceed th
Introduction The application of large language models such as generative pre-trained transformers (GPTs) has been promising in medical educa… (see more)tion, and its performance has been tested for different medical exams. This study aims to assess the performance of GPTs in responding to a set of sample questions of short-answer management problems (SAMPs) from the certification exam of the College of Family Physicians of Canada (CFPC). Method Between August 8th and 25th, 2023, we used GPT-3.5 and GPT-4 in five rounds to answer a sample of 77 SAMPs questions from the CFPC website. Two independent certified family physician reviewers scored AI-generated responses twice: first, according to the CFPC answer key (ie, CFPC score), and second, based on their knowledge and other references (ie, Reviews’ score). An ordinal logistic generalised estimating equations (GEE) model was applied to analyse repeated measures across the five rounds. Result According to the CFPC answer key, 607 (73.6%) lines of answers by GPT-3.5 and 691 (81%) by GPT-4 were deemed accurate. Reviewer’s scoring suggested that about 84% of the lines of answers provided by GPT-3.5 and 93% of GPT-4 were correct. The GEE analysis confirmed that over five rounds, the likelihood of achieving a higher CFPC Score Percentage for GPT-4 was 2.31 times more than GPT-3.5 (OR: 2.31; 95% CI: 1.53 to 3.47; p0.001). Similarly, the Reviewers’ Score percentage for responses provided by GPT-4 over 5 rounds were 2.23 times more likely to exceed th
Reinforcement learning (RL) is inherently rife with non-stationarity since the states and rewards the agent observes during training depend … (see more)on its changing policy. Therefore, networks in deep RL must be capable of adapting to new observations and fitting new targets. However, previous works have observed that networks trained under non-stationarity exhibit an inability to continue learning, termed loss of plasticity, and eventually a collapse in performance. For off-policy deep value-based RL methods, this phenomenon has been correlated with a decrease in representation rank and the ability to fit random targets, termed capacity loss. Although this correlation has generally been attributed to neural network learning under non-stationarity, the connection to representation dynamics has not been carefully studied in on-policy policy optimization methods. In this work, we empirically study representation dynamics in Proximal Policy Optimization (PPO) on the Atari and MuJoCo environments, revealing that PPO agents are also affected by feature rank deterioration and capacity loss. We show that this is aggravated by stronger non-stationarity, ultimately driving the actor's performance to collapse, regardless of the performance of the critic. We ask why the trust region, specific to methods like PPO, cannot alleviate or prevent the collapse and find a connection between representation collapse and the degradation of the trust region, one exacerbating the other. Finally, we present Proximal Feature Optimization (PFO), a novel auxiliary loss that, along with other interventions, shows that regularizing the representation dynamics mitigates the performance collapse of PPO agents.