Publications

VDGraph2Vec: Vulnerability Detection in Assembly Code using Message Passing Neural Networks
Ashita Diwan
Miles Q. Li
Software vulnerability detection is one of the most challenging tasks faced by reverse engineers. Recently, vulnerability detection has rece… (see more)ived a lot of attention due to a drastic increase in the volume and complexity of software. Reverse engineering is a time-consuming and labor-intensive process for detecting malware and software vulnerabilities. However, with the advent of deep learning and machine learning, it has become possible for researchers to automate the process of identifying potential security breaches in software by developing more intelligent technologies. In this research, we propose VDGraph2Vec, an automated deep learning method to generate representations of assembly code for the task of vulnerability detection. Previous approaches failed to attend to topological characteristics of assembly code while discovering the weakness in the software. VDGraph2Vec embeds the control flow and semantic information of assembly code effectively using the expressive capabilities of message passing neural networks and the RoBERTa model. Our model is able to learn the important features that help distinguish between vulnerable and non-vulnerable software. We carry out our experimental analysis for performance benchmark on three of the most common weaknesses and demonstrate that our model can identify vulnerabilities with high accuracy and outperforms the current state-of-the-art binary vulnerability detection models.
CLIP-Mesh: Generating textured meshes from text using pretrained image-text models
Nasir M. Khalid
Tianhao Xie
Tiberiu Popa
Histology-informed automatic parcellation of white matter tracts in the rat spinal cord
Harris Nami
Christian S. Perone
The white matter is organized into “tracts” or “bundles,” which connect different parts of the central nervous system. Knowing where… (see more) these tracts are located in each individual is important for understanding the cause of potential sensorial, motor or cognitive deficits and for developing appropriate treatments. Traditionally, tracts are found using tracer injection, which is a difficult, slow and poorly scalable technique. However, axon populations from a given tract exhibit specific characteristics in terms of morphometrics and myelination. Hence, the delineation of tracts could, in principle, be done based on their morphometry. The objective of this study was to generate automatic parcellation of the rat spinal white matter tracts using the manifold information from scanning electron microscopy images of the entire spinal cord. The axon morphometrics (axon density, axon diameter, myelin thickness and g-ratio) were computed pixelwise following automatic axon segmentation using AxonSeg. The parcellation was based on an agglomerative clustering algorithm to group the tracts. Results show that axon morphometrics provide sufficient information to automatically identify some white matter tracts in the spinal cord, however, not all tracts were correctly identified. Future developments of microstructure quantitative MRI even bring hope for a personalized clustering of white matter tracts in each individual patient. The generated atlas and the associated code can be found at https://github.com/neuropoly/tract-clustering.
Improving the accuracy of single-trial fMRI response estimates using GLMsingle
Jacob S Prince
Jan W Kurzawski
John A Pyles
Michael J Tarr
Kendrick Kay
Isometric Energies for Recovering Injectivity in Constrained Mapping
Xingyi Du
Danny M. Kaufman
Qingnan Zhou
Shahar Kovalsky
Yajie Yan
Tao Ju
Continual Learning with Foundation Models: An Empirical Study of Latent Replay
Oleksiy Ostapenko
Timothee LESORT
Pau Rodriguez
Md Rifat Arefin
Arthur Douillard
Rapid development of large-scale pre-training has resulted in foundation models that can act as effective feature extractors on a variety of… (see more) downstream tasks and domains. Motivated by this, we study the efficacy of pre-trained vision models as a foundation for downstream continual learning (CL) scenarios. Our goal is twofold. First, we want to understand the compute-accuracy trade-off between CL in the raw-data space and in the latent space of pre-trained encoders. Second, we investigate how the characteristics of the encoder, the pre-training algorithm and data, as well as of the resulting latent space affect CL performance. For this, we compare the efficacy of various pre-trained models in large-scale benchmarking scenarios with a vanilla replay setting applied in the latent and in the raw-data space. Notably, this study shows how transfer, forgetting, task similarity and learning are dependent on the input data characteristics and not necessarily on the CL algorithms. First, we show that under some circumstances reasonable CL performance can readily be achieved with a non-parametric classifier at negligible compute. We then show how models pre-trained on broader data result in better performance for various replay sizes. We explain this with representational similarity and transfer properties of these representations. Finally, we show the effectiveness of self-supervised pre-training for downstream domains that are out-of-distribution as compared to the pre-training domain. We point out and validate several research directions that can further increase the efficacy of latent CL including representation ensembling. The diverse set of datasets used in this study can serve as a compute-efficient playground for further CL research. We will publish the code.
Shimming toolbox: An open‐source software toolbox for <scp>B0</scp> and <scp>B1</scp> shimming in MRI
Alexandre D'Astous
Gaspard Cereza
Daniel Papp
Kyle M. Gilbert
Jason P. Stockmann
Eva Alonso‐Ortiz
Applied artificial intelligence in healthcare: Listening to the winds of change in a post-COVID-19 world
Arash Shaban-Nejad
Martin Michalowski
Simone Bianco
John S. Brownstein
Robert L Davis
Beyond Mahalanobis-Based Scores for Textual OOD Detection
Pierre Colombo
Eduardo Dadalto Câmara Gomes
Guillaume Staerman
Nathan Noiry
Towards Adaptive Cybersecurity for Green IoT
Talal Halabi
Martine Bellaiche
The Internet of Things (IoT) paradigm has led to an explosion in the number of IoT devices and an exponential rise in carbon footprint incur… (see more)red by overburdened IoT networks and pervasive cloud/edge communications. Hence, there is a growing interest in industry and academia to enable the efficient use of computing infrastructures by optimizing the management of data center and IoT resources (hardware, software, network, and data) and reducing operational costs to slash greenhouse gas emissions and create healthy environments. Cybersecurity has also been considered in such efforts as a contributor to these environmental issues. Nonetheless, most green security approaches focus on designing low-overhead encryption schemes and do not emphasize energy-efficient security from architectural and deployment viewpoints. This paper sheds light on the emerging paradigm of adaptive cybersecurity as one of the research directions to support sustainable computing in green IoT. It presents three potential research directions and their associated methods for designing and deploying adaptive security in green computing and resource-constrained IoT environments to save on energy consumption. Such efforts will transform the development of data-driven IoT security solutions to be greener and more environment-friendly.
Age differences in functional brain networks associated with loneliness and empathy
Laetitia Mwilambwe-Tshilobo
Roni Setton
Gary R. Turner
R. Nathan Spreng
Abstract Loneliness is associated with differences in resting-state functional connectivity (RSFC) within and between large-scale networks i… (see more)n early- and middle-aged adult cohorts. However, age-related changes in associations between sociality and brain function into late adulthood are not well understood. Here, we examined age differences in the association between two dimensions of sociality—loneliness and empathic responding—and RSFC of the cerebral cortex. Self-report measures of loneliness and empathy were inversely related across the entire sample of younger (mean age = 22.6y, n = 128) and older (mean age = 69.0y, n = 92) adults. Using multivariate analyses of multi-echo fMRI RSFC, we identified distinct functional connectivity patterns for individual and age group differences associated with loneliness and empathic responding. Loneliness in young and empathy in both age groups was related to greater visual network integration with association networks (e.g., default, fronto-parietal control). In contrast, loneliness was positively related to within- and between-network integration of association networks for older adults. These results extend our previous findings in early- and middle-aged cohorts, demonstrating that brain systems associated with loneliness, as well as empathy, differ in older age. Further, the findings suggest that these two aspects of social experience engage different neurocognitive processes across human life-span development.
Momentum Extragradient is Optimal for Games with Cross-Shaped Spectrum
Junhyung Lyle Kim
Anastasios Kyrillidis
Fabian Pedregosa
Google Research
© J.l. Kim
The extragradient method has recently gained a lot of attention, due to its convergence behavior on smooth games. In games, the eigenvalues … (see more)of the Jacobian of the vector field are distributed on the complex plane, exhibiting more convoluted dynamics compared to minimization. In this work, we take a polynomial-based analysis of the extragradient with momentum for optimizing games with \emph{cross-shaped} spectrum on the complex plane. We show two results: first, the extragradient with momentum exhibits three different modes of convergence based on the hyperparameter setup: when the eigenvalues are distributed