Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Comparing Bottom-Up and Top-Down Steering Approaches on In-Context Learning Tasks
A key objective of interpretability research on large language models (LLMs) is to develop methods for robustly steering models toward desir… (see more)ed behaviors. To this end, two distinct approaches to interpretability -- ``bottom-up"and ``top-down"-- have been presented, but there has been little quantitative comparison between them. We present a case study comparing the effectiveness of representative vector steering methods from each branch: function vectors (FV; arXiv:2310.15213), as a bottom-up method, and in-context vectors (ICV; arXiv:2311.06668) as a top-down method. While both aim to capture compact representations of broad in-context learning tasks, we find they are effective only on specific types of tasks: ICVs outperform FVs in behavioral shifting, whereas FVs excel in tasks requiring more precision. We discuss the implications for future evaluations of steering methods and for further research into top-down and bottom-up steering given these findings.
Large Language Models have been extensively studied for their vulnerabilities, particularly in the context of adversarial attacks. However, … (see more)the emergence of Vision Language Models introduces new modalities of risk that have not yet been thoroughly explored, especially when processing multiple images simultaneously. In this paper, we introduce two black-box jailbreak methods that leverage multi-image inputs to uncover vulnerabilities in these models. We present a new safety evaluation dataset for multimodal LLMs called MultiBench, which is composed of these jailbreak methods. These methods can easily be applied and evaluated using our toolkit. We test these methods against six safety aligned frontier models from Google, OpenAI, and Anthropic, revealing significant safety vulnerabilities. Our findings suggest that even the most powerful language models remain vulnerable against compositional adversarial attacks, specifically those composed of multiple images.
Advances in Large Language Models (LLMs) have spurred a wave of LLM library learning systems for mathematical reasoning. These systems aim … (see more)to learn a reusable library of *tools*, such as formal Isabelle lemmas or Python programs that are tailored to a family of tasks. Many of these systems are inspired by the human structuring of knowledge into reusable and extendable concepts, but do current methods actually learn reusable libraries of tools?
We study two library learning systems for mathematics which both reported increased accuracy: LEGO-Prover and TroVE. We find that function reuse is extremely infrequent on miniF2F and MATH. Our followup ablation experiments suggest that, rather than reuse, self-correction and self-consistency are the primary drivers of the observed performance gains.
This study investigates the application of human psychometric assessments to large language models (LLMs) to examine their consistency and m… (see more)alleability in exhibiting personality traits. We administered the Big Five Inventory (BFI) and the Eysenck Personality Questionnaire-Revised (EPQ-R) to various LLMs across different model sizes and persona prompts. Our results reveal substantial variability in responses due to question order shuffling, challenging the notion of a stable LLM "personality." Larger models demonstrated more consistent responses, while persona prompts significantly influenced trait scores. Notably, the assistant persona led to more predictable scaling, with larger models exhibiting more socially desirable and less variable traits. In contrast, non-conventional personas displayed unpredictable behaviors, sometimes extending personality trait scores beyond the typical human range. These findings have important implications for understanding LLM behavior under different conditions and reflect on the consequences of scaling.
This study investigates the application of human psychometric assessments to large language models (LLMs) to examine their consistency and m… (see more)alleability in exhibiting personality traits. We administered the Big Five Inventory (BFI) and the Eysenck Personality Questionnaire-Revised (EPQ-R) to various LLMs across different model sizes and persona prompts. Our results reveal substantial variability in responses due to question order shuffling, challenging the notion of a stable LLM "personality." Larger models demonstrated more consistent responses, while persona prompts significantly influenced trait scores. Notably, the assistant persona led to more predictable scaling, with larger models exhibiting more socially desirable and less variable traits. In contrast, non-conventional personas displayed unpredictable behaviors, sometimes extending personality trait scores beyond the typical human range. These findings have important implications for understanding LLM behavior under different conditions and reflect on the consequences of scaling.
Research and industry are rapidly advancing the innovation and adoption of foundation model-based systems, yet the tools for managing these … (see more)models have not kept pace. Understanding the provenance and lineage of models is critical for researchers, industry, regulators, and public trust. While model cards and system cards were designed to provide transparency, they fall short in key areas: tracing model genealogy, enabling machine readability, offering reliable centralized management systems, and fostering consistent creation incentives. This challenge mirrors issues in software supply chain security, but AI/ML remains at an earlier stage of maturity. Addressing these gaps requires industry-standard tooling that can be adopted by foundation model publishers, open-source model innovators, and major distribution platforms. We propose a machine-readable model specification format to simplify the creation of model records, thereby reducing error-prone human effort, notably when a new model inherits most of its design from a foundation model. Our solution explicitly traces relationships between upstream and downstream models, enhancing transparency and traceability across the model lifecycle. To facilitate the adoption, we introduce the unified model record (UMR) repository , a semantically versioned system that automates the publication of model records to multiple formats (PDF, HTML, LaTeX) and provides a hosted web interface (https://modelrecord.com/). This proof of concept aims to set a new standard for managing foundation models, bridging the gap between innovation and responsible model management.
The Universality Hypothesis in large language models (LLMs) claims that different models converge towards similar concept representations in… (see more) their latent spaces. Providing evidence for this hypothesis would enable researchers to exploit universal properties, facilitating the generalization of mechanistic interpretability techniques across models. Previous works studied if LLMs learned the same features, which are internal representations that activate on specific concepts. Since comparing features across LLMs is challenging due to polysemanticity, in which LLM neurons often correspond to multiple unrelated features rather than to distinct concepts, sparse autoencoders (SAEs) have been employed to disentangle LLM neurons into SAE features corresponding to distinct concepts. In this paper, we introduce a new variation of the universality hypothesis called Analogous Feature Universality: we hypothesize that even if SAEs across different models learn different feature representations, the spaces spanned by SAE features are similar, such that one SAE space is similar to another SAE space under rotation-invariant transformations. Evidence for this hypothesis would imply that interpretability techniques related to latent spaces, such as steering vectors, may be transferred across models via certain transformations. To investigate this hypothesis, we first pair SAE features across different models via activation correlation, and then measure spatial relation similarities between paired features via representational similarity measures, which transform spaces into representations that reveal hidden relational similarities. Our experiments demonstrate high similarities for SAE feature spaces across various LLMs, providing evidence for feature space universality.
In-context learning (ICL) is the ability of a model to learn a new task by observing a few exemplars in its context. While prevalent in NLP,… (see more) this capability has recently also been observed in Reinforcement Learning (RL) settings. Prior in-context RL methods, however, require entire episodes in the agent's context. Given that complex environments typically lead to long episodes with sparse rewards, these methods are constrained to simple environments with short episodes. To address these challenges, we introduce Retrieval-Augmented Decision Transformer (RA-DT). RA-DT employs an external memory mechanism to store past experiences from which it retrieves only sub-trajectories relevant for the current situation. The retrieval component in RA-DT does not require training and can be entirely domain-agnostic. We evaluate the capabilities of RA-DT on grid-world environments, robotics simulations, and procedurally-generated video games. On grid-worlds, RA-DT outperforms baselines, while using only a fraction of their context length. Furthermore, we illuminate the limitations of current in-context RL methods on complex environments and discuss future directions. To facilitate future research, we release datasets for four of the considered environments.
Reconstruction functions are pivotal in sample compression theory, a framework for deriving tight generalization bounds. From a small sample… (see more) of the training set (the compression set) and an optional stream of information (the message), they recover a predictor previously learned from the whole training set. While usually fixed, we propose to learn reconstruction functions. To facilitate the optimization and increase the expressiveness of the message, we derive a new sample compression generalization bound for real-valued messages.
From this theoretical analysis, we then present a new hypernetwork architecture that outputs predictors with tight generalization guarantees when trained using an original meta-learning framework. The results of promising preliminary experiments are then reported.