Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Object-centric Binding in Contrastive Language-Image Pretraining
Recent advances in vision language models (VLM) have been driven by contrastive models such as CLIP, which learn to associate visual informa… (see more)tion with their corresponding text descriptions. However, these models have limitations in understanding complex compositional scenes involving multiple objects and their spatial relationships. To address these challenges, we propose a novel approach that diverges from commonly used strategies, which rely on the design of hard-negative augmentations. Instead, our work focuses on integrating inductive biases into pre-trained CLIP-like models to improve their compositional understanding without using any additional hard-negatives. To that end, we introduce a binding module that connects a scene graph, derived from a text description, with a slot-structured image representation, facilitating a structured similarity assessment between the two modalities. We also leverage relationships as text-conditioned visual constraints, thereby capturing the intricate interactions between objects and their contextual relationships more effectively. Our resulting model not only enhances the performance of CLIP-based models in multi-object compositional understanding but also paves the way towards more accurate and sample-efficient image-text matching of complex scenes.
This work sheds light on whether and how creative writers' needs are met by existing research and commercial writing support tools (WST). We… (see more) conducted a need finding study to gain insight into the writers' process during creative writing through a qualitative analysis of the response from an online questionnaire and Reddit discussions on r/Writing. Using a systematic analysis of 115 tools and 67 research papers, we map out the landscape of how digital tools facilitate the writing process. Our triangulation of data reveals that research predominantly focuses on the writing activity and overlooks pre-writing activities and the importance of visualization. We distill 10 key takeaways to inform future research on WST and point to opportunities surrounding underexplored areas. Our work offers a holistic and up-to-date account of how tools have transformed the writing process, guiding the design of future tools that address writers' evolving and unmet needs.
Misaligned research objectives have considerably hindered progress in adversarial robustness research over the past decade. For instance, an… (see more) extensive focus on optimizing target metrics, while neglecting rigorous standardized evaluation, has led researchers to pursue ad-hoc heuristic defenses that were seemingly effective. Yet, most of these were exposed as flawed by subsequent evaluations, ultimately contributing little measurable progress to the field. In this position paper, we illustrate that current research on the robustness of large language models (LLMs) risks repeating past patterns with potentially worsened real-world implications. To address this, we argue that realigned objectives are necessary for meaningful progress in adversarial alignment. To this end, we build on established cybersecurity taxonomy to formally define differences between past and emerging threat models that apply to LLMs. Using this framework, we illustrate that progress requires disentangling adversarial alignment into addressable sub-problems and returning to core academic principles, such as measureability, reproducibility, and comparability. Although the field presents significant challenges, the fresh start on adversarial robustness offers the unique opportunity to build on past experience while avoiding previous mistakes.
Transformer-based language models have shown state-of-the-art performance on a variety of natural language understanding tasks. To achieve t… (see more)his performance, these models are first pre-trained on general corpus and then fine-tuned on downstream tasks. Previous work studied the effect of pruning the training set of the downstream tasks on the performance of the model on its evaluation set. In this work, we propose an automatic dataset pruning method for the training set of fine-tuning tasks. Our method is based on the model’s success rate in correctly classifying each training data point. Unlike previous work which relies on user feedback to determine subset size, our method automatically extracts training subsets that are adapted for each pair of model and fine-tuning task. Our method provides multiple subsets for use in dataset pruning that navigate the trade-off between subset size and evaluation accuracy. Our largest subset, which we also refer to as the winning ticket subset, is on average
2025-02-17
Proceedings of The 3rd Conference on Lifelong Learning Agents (published)