Long-term outcomes of critically ill patients with hematological malignancies: what is the impact of the coronavirus disease 2019 pandemic? Author's reply
Laveena Munshi
Sangeeta Mehta
MAP: Model Merging with Amortized Pareto Front Using Limited Computation
Lu Liu
Tianyu Zhang
Zhiqi Bu
Suyuchen Wang
Huan He
Jie Fu
Yonghui Wu
Jiang Bian
Yong Chen
ProtSCAPE: Mapping the landscape of protein conformations in molecular dynamics
Siddharth Viswanath
Dhananjay Bhaskar
David R. Johnson
João Felipe Rocha
Egbert Castro
Jackson Grady
Alex T. Grigas
Michael Perlmutter
Corey S. O'Hern
Understanding the dynamic nature of protein structures is essential for comprehending their biological functions. While significant progress… (see more) has been made in predicting static folded structures, modeling protein motions on microsecond to millisecond scales remains challenging. To address these challenges, we introduce a novel deep learning architecture, Protein Transformer with Scattering, Attention, and Positional Embedding (ProtSCAPE), which leverages the geometric scattering transform alongside transformer-based attention mechanisms to capture protein dynamics from molecular dynamics (MD) simulations. ProtSCAPE utilizes the multi-scale nature of the geometric scattering transform to extract features from protein structures conceptualized as graphs and integrates these features with dual attention structures that focus on residues and amino acid signals, generating latent representations of protein trajectories. Furthermore, ProtSCAPE incorporates a regression head to enforce temporally coherent latent representations.
Robust Guided Diffusion for Offline Black-Box Optimization
Can Chen
Christopher Beckham
Zixuan Liu
Offline black-box optimization aims to maximize a black-box function using an offline dataset of designs and their measured properties. Two … (see more)main approaches have emerged: the forward approach, which learns a mapping from input to its value, thereby acting as a proxy to guide optimization, and the inverse approach, which learns a mapping from value to input for conditional generation. (a) Although proxy-free~(classifier-free) diffusion shows promise in robustly modeling the inverse mapping, it lacks explicit guidance from proxies, essential for generating high-performance samples beyond the training distribution. Therefore, we propose \textit{proxy-enhanced sampling} which utilizes the explicit guidance from a trained proxy to bolster proxy-free diffusion with enhanced sampling control. (b) Yet, the trained proxy is susceptible to out-of-distribution issues. To address this, we devise the module \textit{diffusion-based proxy refinement}, which seamlessly integrates insights from proxy-free diffusion back into the proxy for refinement. To sum up, we propose \textit{\textbf{R}obust \textbf{G}uided \textbf{D}iffusion for Offline Black-box Optimization}~(\textbf{RGD}), combining the advantages of proxy~(explicit guidance) and proxy-free diffusion~(robustness) for effective conditional generation. RGD achieves state-of-the-art results on various design-bench tasks, underscoring its efficacy. Our code is at https://github.com/GGchen1997/RGD.
Single-Shot Learning of Stable Dynamical Systems for Long-Horizon Manipulation Tasks
Alexandre St-Aubin
Amin Abyaneh
Mastering complex sequential tasks continues to pose a significant challenge in robotics. While there has been progress in learning long-hor… (see more)izon manipulation tasks, most existing approaches lack rigorous mathematical guarantees for ensuring reliable and successful execution. In this paper, we extend previous work on learning long-horizon tasks and stable policies, focusing on improving task success rates while reducing the amount of training data needed. Our approach introduces a novel method that (1) segments long-horizon demonstrations into discrete steps defined by waypoints and subgoals, and (2) learns globally stable dynamical system policies to guide the robot to each subgoal, even in the face of sensory noise and random disturbances. We validate our approach through both simulation and real-world experiments, demonstrating effective transfer from simulation to physical robotic platforms. Code is available at https://github.com/Alestaubin/stable-imitation-policy-with-waypoints
SOAK: Same/Other/All K-fold cross-validation for estimating similarity of patterns in data subsets
Gabrielle Thibault
C. S. Bodine
Paul Nelson Arellano
Alexander F Shenkin
Olivia J. Lindly
In many real-world applications of machine learning, we are interested to know if it is possible to train on the data that we have gathered … (see more)so far, and obtain accurate predictions on a new test data subset that is qualitatively different in some respect (time period, geographic region, etc). Another question is whether data subsets are similar enough so that it is beneficial to combine subsets during model training. We propose SOAK, Same/Other/All K-fold cross-validation, a new method which can be used to answer both questions. SOAK systematically compares models which are trained on different subsets of data, and then used for prediction on a fixed test subset, to estimate the similarity of learnable/predictable patterns in data subsets. We show results of using SOAK on six new real data sets (with geographic/temporal subsets, to check if predictions are accurate on new subsets), 3 image pair data sets (subsets are different image types, to check that we get smaller prediction error on similar images), and 11 benchmark data sets with predefined train/test splits (to check similarity of predefined splits).
Spatial Action Unit Cues for Interpretable Deep Facial Expression Recognition
Soufiane Belharbi
Alessandro L. Koerich
Simon Bacon
Eric Granger
Although state-of-the-art classifiers for facial expression recognition (FER) can achieve a high level of accuracy, they lack interpretabili… (see more)ty, an important feature for end-users. Experts typically associate spatial action units (AUs) from a codebook to facial regions for the visual interpretation of expressions. In this paper, the same expert steps are followed. A new learning strategy is proposed to explicitly incorporate AU cues into classifier training, allowing to train deep interpretable models. During training, this AU codebook is used, along with the input image expression label, and facial landmarks, to construct a AU heatmap that indicates the most discriminative image regions of interest w.r.t the facial expression. This valuable spatial cue is leveraged to train a deep interpretable classifier for FER. This is achieved by constraining the spatial layer features of a classifier to be correlated with AU heatmaps. Using a composite loss, the classifier is trained to correctly classify an image while yielding interpretable visual layer-wise attention correlated with AU maps, simulating the expert decision process. Our strategy only relies on image class expression for supervision, without additional manual annotations. Our new strategy is generic, and can be applied to any deep CNN- or transformer-based classifier without requiring any architectural change or significant additional training time. Our extensive evaluation on two public benchmarks RAF-DB, and AffectNet datasets shows that our proposed strategy can improve layer-wise interpretability without degrading classification performance. In addition, we explore a common type of interpretable classifiers that rely on class activation mapping (CAM) methods, and show that our approach can also improve CAM interpretability.
Spatial Action Unit Cues for Interpretable Deep Facial Expression Recognition
Soufiane Belharbi
Alessandro Lameiras Koerich
Simon Bacon
Eric Granger
Although state-of-the-art classifiers for facial expression recognition (FER) can achieve a high level of accuracy, they lack interpretabili… (see more)ty, an important feature for end-users. Experts typically associate spatial action units (AUs) from a codebook to facial regions for the visual interpretation of expressions. In this paper, the same expert steps are followed. A new learning strategy is proposed to explicitly incorporate AU cues into classifier training, allowing to train deep interpretable models. During training, this AU codebook is used, along with the input image expression label, and facial landmarks, to construct a AU heatmap that indicates the most discriminative image regions of interest w.r.t the facial expression. This valuable spatial cue is leveraged to train a deep interpretable classifier for FER. This is achieved by constraining the spatial layer features of a classifier to be correlated with AU heatmaps. Using a composite loss, the classifier is trained to correctly classify an image while yielding interpretable visual layer-wise attention correlated with AU maps, simulating the expert decision process. Our strategy only relies on image class expression for supervision, without additional manual annotations. Our new strategy is generic, and can be applied to any deep CNN- or transformer-based classifier without requiring any architectural change or significant additional training time. Our extensive evaluation on two public benchmarks RAF-DB, and AffectNet datasets shows that our proposed strategy can improve layer-wise interpretability without degrading classification performance. In addition, we explore a common type of interpretable classifiers that rely on class activation mapping (CAM) methods, and show that our approach can also improve CAM interpretability.
A Survey of Diversification Techniques in Search and Recommendation
Haolun Wu
Yansen Zhang
Chen Ma
Fuyuan Lyu
Bowei He
Bhaskar Mitra
Diversifying search results is an important research topic in retrieval systems in order to satisfy both the various interests of customers … (see more)and the equal market exposure of providers. There has been a growing attention on diversity-aware research during recent years, accompanied by a proliferation of literature on methods to promote diversity in search and recommendation. However, the diversity-aware studies in retrieval systems lack a systematic organization and are rather fragmented. In this survey, we are the first to propose a unified taxonomy for classifying the metrics and approaches of diversification in both search and recommendation, which are two of the most extensively researched fields of retrieval systems. We begin the survey with a brief discussion of why diversity is important in retrieval systems, followed by a summary of the various diversity concerns in search and recommendation, highlighting their relationship and differences. For the survey’s main body, we present a unified taxonomy of diversification metrics and approaches in retrieval systems, from both the search and recommendation perspectives. In the later part of the survey, we discuss the openness research questions of diversity-aware research in search and recommendation in an effort to inspire future innovations and encourage the implementation of diversity in real-world systems.
The oneirogen hypothesis: modeling the hallucinatory effects of classical psychedelics in terms of replay-dependent plasticity mechanisms
Colin Bredenberg
Fabrice Normandin
What Information Contributes to Log-based Anomaly Detection? Insights from a Configurable Transformer-Based Approach
Xingfang Wu
Heng Li
Log data are generated from logging statements in the source code, providing insights into the execution processes of software applications … (see more)and systems. State-of-the-art log-based anomaly detection approaches typically leverage deep learning models to capture the semantic or sequential information in the log data and detect anomalous runtime behaviors. However, the impacts of these different types of information are not clear. In addition, existing approaches have not captured the timestamps in the log data, which can potentially provide more fine-grained temporal information than sequential information. In this work, we propose a configurable transformer-based anomaly detection model that can capture the semantic, sequential, and temporal information in the log data and allows us to configure the different types of information as the model's features. Additionally, we train and evaluate the proposed model using log sequences of different lengths, thus overcoming the constraint of existing methods that rely on fixed-length or time-windowed log sequences as inputs. With the proposed model, we conduct a series of experiments with different combinations of input features to evaluate the roles of different types of information in anomaly detection. When presented with log sequences of varying lengths, the model can attain competitive and consistently stable performance compared to the baselines. The results indicate that the event occurrence information plays a key role in identifying anomalies, while the impact of the sequential and temporal information is not significant for anomaly detection in the studied public datasets. On the other hand, the findings also reveal the simplicity of the studied public datasets and highlight the importance of constructing new datasets that contain different types of anomalies to better evaluate the performance of anomaly detection models.
Automating MedSAM by Learning Prompts with Weak Few-Shot Supervision
Mélanie Gaillochet
Christian Desrosiers