Portrait of Tegan Maharaj

Tegan Maharaj

Core Academic Member
Assistant Professor in Machine Learning, HEC Montréal, Department of Decision Science
Research Topics
Deep Learning
Dynamical Systems
Machine Learning Theory
Multimodal Learning
Representation Learning

Biography

I am an assistant professor at the Department of Decision Science at HEC Montréal.

The goal of my research is to contribute understanding and techniques to the growing science of responsible AI development, while usefully applying AI to high-impact ecological problems related to climate change, epidemiology, AI alignment and ecological impact assessments. My recent research has two themes: (1) using deep models for policy analysis and risk mitigation, and (2) designing data or unit test environments to empirically evaluate learning behaviour or simulate the deployment of AI systems. Please contact me if you are interested in collaborations in these areas.

I am generally interested in studying “what goes into” deep models—not only data, but also the broader learning environment (e.g., task design/specification, loss function and regularization) and the broader societal context of deployment (e.g., privacy considerations, trends and incentives, norms and human biases). I am concerned and passionate about AI ethics and safety, and the application of ML to environmental management, health and social welfare.

Current Students

Master's Research - Université de Montréal
Principal supervisor :

Publications

The State of Data Curation at NeurIPS: An Assessment of Dataset Development Practices in the Datasets and Benchmarks Track
Eshta Bhardwaj
Harshit Gujral
Siyi Wu
Ciara Zogheib
Christoph Becker
Data curation is a field with origins in librarianship and archives, whose scholarship and thinking on data issues go back centuries, if not… (see more) millennia. The field of machine learning is increasingly observing the importance of data curation to the advancement of both applications and fundamental understanding of machine learning models - evidenced not least by the creation of the Datasets and Benchmarks track itself. This work provides an analysis of dataset development practices at NeurIPS through the lens of data curation. We present an evaluation framework for dataset documentation, consisting of a rubric and toolkit developed through a literature review of data curation principles. We use the framework to assess the strengths and weaknesses in current dataset development practices of 60 datasets published in the NeurIPS Datasets and Benchmarks track from 2021-2023. We summarize key findings and trends. Results indicate greater need for documentation about environmental footprint, ethical considerations, and data management. We suggest targeted strategies and resources to improve documentation in these areas and provide recommendations for the NeurIPS peer-review process that prioritize rigorous data curation in ML. Finally, we provide results in the format of a dataset that showcases aspects of recommended data curation practices. Our rubric and results are of interest for improving data curation practices broadly in the field of ML as well as to data curation and science and technology studies scholars studying practices in ML. Our aim is to support continued improvement in interdisciplinary research on dataset practices, ultimately improving the reusability and reproducibility of new datasets and benchmarks, enabling standardized and informed human oversight, and strengthening the foundation of rigorous and responsible ML research.
Quantifying Likeness: A Simple Machine Learning Approach to Identifying Copyright Infringement in (AI-Generated) Artwork
Michaela Drouillard
Ryan Spencer
Nikée Nantambu-Allen
Through study of legal precedent, we propose a pragmatic way to quantify copyright infringement, via stylistic similarity, in AI-generated a… (see more)rtwork. Copyright infringement by AI systems is a topic of rapidly-increasing importance as generative AI becomes more widespread and commercial. In contrast to typical work in this field, more in line with a realistic legal setting, our approach quantifies similarity of a set of potentially-infringing "defendant" artworks to a set of copyrighted "plaintiff" artworks. We develop our approach by making use of one of the most litigated artistic creations of this century -- Mickey Mouse. We curate a dataset using Mickey as the plaintiff, and perform hyperparameter search, scaling, and robustness analyses with various defendent artworks from real legal cases to find settings that generalize well. We operationalize similarity via a simple discrimintative task which can be accomplished in a low-resource setting by non-experts -- our aim is to provide a `plug and play' method that is feasible for artists and/or legal experts to use with their own plaintiff sets of artworks. We further demonstrate the viability of our approach by quantifying similarity in a second curated dataset of Maria Prymachenko's art vs. AI-generated images. We conclude by discussing uses of our work in both legal and other settings, including provision of artist compensation.
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (see 22 more)
Heidi Chenyu Zhang
Ruiqi Zhong
Sean O hEigeartaigh
Gabriel Recchia
Giulio Corsi
Alan Chan
Markus Anderljung
Lilian Edwards
Aleksandar Petrov
Christian Schroeder de Witt
Danqi Chen
Sumeet Ramesh Motwani
Samuel Albanie
Jakob Nicolaus Foerster
Philip Torr
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
Implicit meta-learning may lead language models to trust more reliable sources
Dmitrii Krasheninnikov
Egor Krasheninnikov
Bruno Mlodozeniec
We demonstrate that large language models (LLMs) may learn indicators of document usefulness and modulate their updates accordingly. We intr… (see more)oduce random strings ("tags") as indicators of usefulness in a synthetic fine-tuning dataset. Fine-tuning on this dataset leads to **implicit meta-learning (IML)**: in further fine-tuning, the model updates to make more use of text that is tagged as useful. We perform a thorough empirical investigation of this phenomenon, finding (among other things) that (i) it occurs in both pretrained LLMs and those trained from scratch, as well as on a vision task, and (ii) larger models and smaller batch sizes tend to give more IML. We also use probing to examine how IML changes the way models store knowledge in their parameters. Finally, we reflect on what our results might imply about the capabilities, risks, and controllability of future AI systems.
Machine Learning Data Practices through a Data Curation Lens: An Evaluation Framework
Eshta Bhardwaj
Harshit Gujral
Siyi Wu
Ciara Zogheib
Christoph Becker
Studies of dataset development in machine learning call for greater attention to the data practices that make model development possible and… (see more) shape its outcomes. Many argue that the adoption of theory and practices from archives and data curation fields can support greater fairness, accountability, transparency, and more ethical machine learning. In response, this paper examines data practices in machine learning dataset development through the lens of data curation. We evaluate data practices in machine learning as data curation practices. To do so, we develop a framework for evaluating machine learning datasets using data curation concepts and principles through a rubric. Through a mixed-methods analysis of evaluation results for 25 ML datasets, we study the feasibility of data curation principles to be adopted for machine learning data work in practice and explore how data curation is currently performed. We find that researchers in machine learning, which often emphasizes model development, struggle to apply standard data curation principles. Our findings illustrate difficulties at the intersection of these fields, such as evaluating dimensions that have shared terms in both fields but non-shared meanings, a high degree of interpretative flexibility in adapting concepts without prescriptive restrictions, obstacles in limiting the depth of data curation expertise needed to apply the rubric, and challenges in scoping the extent of documentation dataset creators are responsible for. We propose ways to address these challenges and develop an overall framework for evaluation that outlines how data curation concepts and methods can inform machine learning data practices.
Methods, Applications, and Directions of Learning-to-Rank in NLP Research
Justin Lee
Gabriel Bernier-Colborne
Sowmya Vajjala
Learning-to-rank (LTR) algorithms aim to order a set of items according to some criteria. They are at the core of applications such as web s… (see more)earch and social media recommendations, and are an area of rapidly increasing interest, with the rise of large language models (LLMs) and the widespread impact of these technologies on society. In this paper, we survey the diverse use cases of LTR methods in natural language processing (NLP) research, looking at previously under-studied aspects such as multilingualism in LTR applications and statistical significance testing for LTR problems. We also consider how large language models are changing the LTR landscape. This survey is aimed at NLP researchers and practitioners interested in understanding the formalisms and best practices regarding the application of LTR approaches in their research.
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (see 18 more)
Heidi Zhang
Ruiqi Zhong
Sean 'o H'eigeartaigh
Gabriel Recchia
Giulio Corsi
Alan Chan
Markus Anderljung
Lilian Edwards
Danqi Chen
Samuel Albanie
Jakob Nicolaus Foerster
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (see more)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
Beyond Predictive Algorithms in Child Welfare
Erina Seh-Young Moon
Erin Moon
Devansh Saxena
Shion Guha
Managing AI Risks in an Era of Rapid Progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Trevor Darrell
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (see 5 more)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Sören Mindermann
Harms from Increasingly Agentic Algorithmic Systems
Alan Chan
Rebecca Salganik
Alva Markelius
Chris Pang
Nitarshan Rajkumar
Dmitrii Krasheninnikov
Lauro Langosco
Zhonghao He
Yawen Duan
Micah Carroll
Michelle Lin
Alex Mayhew
Katherine Collins
Maryam Molamohammadi
John Burden
Wanru Zhao
Shalaleh Rismani
Konstantinos Voudouris
Umang Bhatt
Adrian Weller … (see 2 more)
Research in Fairness, Accountability, Transparency, and Ethics (FATE)1 has established many sources and forms of algorithmic harm, in domain… (see more)s as diverse as health care, finance, policing, and recommendations. Much work remains to be done to mitigate the serious harms of these systems, particularly those disproportionately affecting marginalized communities. Despite these ongoing harms, new systems are being developed and deployed, typically without strong regulatory barriers, threatening the perpetuation of the same harms and the creation of novel ones. In response, the FATE community has emphasized the importance of anticipating harms, rather than just responding to them. Anticipation of harms is especially important given the rapid pace of developments in machine learning (ML). Our work focuses on the anticipation of harms from increasingly agentic systems. Rather than providing a definition of agency as a binary property, we identify 4 key characteristics which, particularly in combination, tend to increase the agency of a given algorithmic system: underspecification, directness of impact, goal-directedness, and long-term planning. We also discuss important harms which arise from increasing agency – notably, these include systemic and/or long-range impacts, often on marginalized or unconsidered stakeholders. We emphasize that recognizing agency of algorithmic systems does not absolve or shift the human responsibility for algorithmic harms. Rather, we use the term agency to highlight the increasingly evident fact that ML systems are not fully under human control. Our work explores increasingly agentic algorithmic systems in three parts. First, we explain the notion of an increase in agency for algorithmic systems in the context of diverse perspectives on agency across disciplines. Second, we argue for the need to anticipate harms from increasingly agentic systems. Third, we discuss important harms from increasingly agentic systems and ways forward for addressing them. We conclude by reflecting on implications of our work for anticipating algorithmic harms from emerging systems.
Proactive Contact Tracing
Prateek Gupta
Martin Weiss
Nasim Rahaman
Hannah Alsdurf
Nanor Minoyan
Soren Harnois-Leblanc
Joanna Merckx
andrew williams
Victor Schmidt
Pierre-Luc St-Charles
Akshay Patel
Yang Zhang
Bernhard Schölkopf
Factors Influencing Generalization in Chaotic Dynamical Systems
Luã Streit
Vikram Voleti
Many real-world systems exhibit chaotic behaviour, for example: weather, fluid dynamics, stock markets, natural ecosystems, and disease tran… (see more)smission. While chaotic systems are often thought to be completely unpredictable, in fact there are patterns within and across that experts frequently describe and contrast qualitatively. We hypothesize that given the right supervision / task definition, representation learning systems will be able to pick up on these patterns, and successfully generalize both in- and out-of-distribution (OOD). Thus, this work explores and identifies key factors which lead to good generalization. We observe a variety of interesting phenomena, including: learned representations transfer much better when fine-tuned vs. frozen; forecasting appears to be the best pre-training task; OOD robustness falls off very quickly outside the training distribution; recurrent architectures generally outperform others on OOD generalization. Our findings are of interest to any domain of prediction where chaotic dynamics play a role.