Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Amortized inference is the task of training a parametric model, such as a neural network, to approximate a distribution with a given unnorma… (see more)lized density where exact sampling is intractable. When sampling is implemented as a sequential decision-making process, reinforcement learning (RL) methods, such as generative flow networks, can be used to train the sampling policy. Off-policy RL training facilitates the discovery of diverse, high-reward candidates, but existing methods still face challenges in efficient exploration. We propose to use an adaptive training distribution (the Teacher) to guide the training of the primary amortized sampler (the Student) by prioritizing high-loss regions. The Teacher, an auxiliary behavior model, is trained to sample high-error regions of the Student and can generalize across unexplored modes, thereby enhancing mode coverage by providing an efficient training curriculum. We validate the effectiveness of this approach in a synthetic environment designed to present an exploration challenge, two diffusion-based sampling tasks, and four biochemical discovery tasks demonstrating its ability to improve sample efficiency and mode coverage.
The introduction of Transformers in 2017 reshaped the landscape of deep learning. Originally proposed for sequence modelling, Transformers h… (see more)ave since achieved widespread success across various domains. However, the scalability limitations of Transformers - particularly with respect to sequence length - have sparked renewed interest in novel recurrent models that are parallelizable during training, offer comparable performance, and scale more effectively. In this work, we revisit sequence modelling from a historical perspective, focusing on Recurrent Neural Networks (RNNs), which dominated the field for two decades before the rise of Transformers. Specifically, we examine LSTMs (1997) and GRUs (2014). We demonstrate that by simplifying these models, we can derive minimal versions (minLSTMs and minGRUs) that (1) use fewer parameters than their traditional counterparts, (2) are fully parallelizable during training, and (3) achieve surprisingly competitive performance on a range of tasks, rivalling recent models including Transformers.
The introduction of Transformers in 2017 reshaped the landscape of deep learning. Originally proposed for sequence modelling, Transformers h… (see more)ave since achieved widespread success across various domains. However, the scalability limitations of Transformers - particularly with respect to sequence length - have sparked renewed interest in novel recurrent models that are parallelizable during training, offer comparable performance, and scale more effectively. In this work, we revisit sequence modelling from a historical perspective, focusing on Recurrent Neural Networks (RNNs), which dominated the field for two decades before the rise of Transformers. Specifically, we examine LSTMs (1997) and GRUs (2014). We demonstrate that by simplifying these models, we can derive minimal versions (minLSTMs and minGRUs) that (1) use fewer parameters than their traditional counterparts, (2) are fully parallelizable during training, and (3) achieve surprisingly competitive performance on a range of tasks, rivalling recent models including Transformers.
The introduction of Transformers in 2017 reshaped the landscape of deep learning. Originally proposed for sequence modelling, Transformers h… (see more)ave since achieved widespread success across various domains. However, the scalability limitations of Transformers - particularly with respect to sequence length - have sparked renewed interest in novel recurrent models that are parallelizable during training, offer comparable performance, and scale more effectively. In this work, we revisit sequence modelling from a historical perspective, focusing on Recurrent Neural Networks (RNNs), which dominated the field for two decades before the rise of Transformers. Specifically, we examine LSTMs (1997) and GRUs (2014). We demonstrate that by simplifying these models, we can derive minimal versions (minLSTMs and minGRUs) that (1) use fewer parameters than their traditional counterparts, (2) are fully parallelizable during training, and (3) achieve surprisingly competitive performance on a range of tasks, rivalling recent models including Transformers.
The introduction of Transformers in 2017 reshaped the landscape of deep learning. Originally proposed for sequence modelling, Transformers h… (see more)ave since achieved widespread success across various domains. However, the scalability limitations of Transformers - particularly with respect to sequence length - have sparked renewed interest in novel recurrent models that are parallelizable during training, offer comparable performance, and scale more effectively. In this work, we revisit sequence modelling from a historical perspective, focusing on Recurrent Neural Networks (RNNs), which dominated the field for two decades before the rise of Transformers. Specifically, we examine LSTMs (1997) and GRUs (2014). We demonstrate that by simplifying these models, we can derive minimal versions (minLSTMs and minGRUs) that (1) use fewer parameters than their traditional counterparts, (2) are fully parallelizable during training, and (3) achieve surprisingly competitive performance on a range of tasks, rivalling recent models including Transformers.
The introduction of Transformers in 2017 reshaped the landscape of deep learning. Originally proposed for sequence modelling, Transformers h… (see more)ave since achieved widespread success across various domains. However, the scalability limitations of Transformers - particularly with respect to sequence length - have sparked renewed interest in novel recurrent models that are parallelizable during training, offer comparable performance, and scale more effectively. In this work, we revisit sequence modelling from a historical perspective, focusing on Recurrent Neural Networks (RNNs), which dominated the field for two decades before the rise of Transformers. Specifically, we examine LSTMs (1997) and GRUs (2014). We demonstrate that by simplifying these models, we can derive minimal versions (minLSTMs and minGRUs) that (1) use fewer parameters than their traditional counterparts, (2) are fully parallelizable during training, and (3) achieve surprisingly competitive performance on a range of tasks, rivalling recent models including Transformers.
The introduction of Transformers in 2017 reshaped the landscape of deep learning. Originally proposed for sequence modelling, Transformers h… (see more)ave since achieved widespread success across various domains. However, the scalability limitations of Transformers - particularly with respect to sequence length - have sparked renewed interest in novel recurrent models that are parallelizable during training, offer comparable performance, and scale more effectively. In this work, we revisit sequence modelling from a historical perspective, focusing on Recurrent Neural Networks (RNNs), which dominated the field for two decades before the rise of Transformers. Specifically, we examine LSTMs (1997) and GRUs (2014). We demonstrate that by simplifying these models, we can derive minimal versions (minLSTMs and minGRUs) that (1) use fewer parameters than their traditional counterparts, (2) are fully parallelizable during training, and (3) achieve surprisingly competitive performance on a range of tasks, rivalling recent models including Transformers.
The introduction of Transformers in 2017 reshaped the landscape of deep learning. Originally proposed for sequence modelling, Transformers h… (see more)ave since achieved widespread success across various domains. However, the scalability limitations of Transformers - particularly with respect to sequence length - have sparked renewed interest in novel recurrent models that are parallelizable during training, offer comparable performance, and scale more effectively. In this work, we revisit sequence modelling from a historical perspective, focusing on Recurrent Neural Networks (RNNs), which dominated the field for two decades before the rise of Transformers. Specifically, we examine LSTMs (1997) and GRUs (2014). We demonstrate that by simplifying these models, we can derive minimal versions (minLSTMs and minGRUs) that (1) use fewer parameters than their traditional counterparts, (2) are fully parallelizable during training, and (3) achieve surprisingly competitive performance on a range of tasks, rivalling recent models including Transformers.