Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
How can neural networks learn the rich internal representations required for difficult tasks such as recognizing objects or understanding la… (see more)nguage?
. Justification of the selection of the architecture and hyperparameters of artificial neural networks (ANN), focused on solving various cla… (see more)sses of applied problems, is a scientific and methodological problem. Optimizing the selection of ANN hyperparameters allows you to improve the quality and speed of ANN training. Various methods of optimizing the selection of ANN hyper-parameters are known – the use of evolutionary calculations, genetic algorithms, etc., but they require the use of additional software. To optimize the process of selecting ANN hyperparameters, Google Research has developed the KerasTuner software tool. It is a platform for automated search of a set of optimal combinations of hyperparameters. In Kerastuner, you can use various methods - random search, Bayesian optimization, or Hyperband. In the numerical experiments conducted by the author, 14 hyperparameters were varied, including the number of blocks of convolutional layers and the filters forming them, the type of activation function, the parameters of the "dropout" layers, and others. The studied tools demonstrated high efficiency while simultaneously varying more than a dozen optimized parameters of the convolutional network. The calculation time on the Colaboratory platform for the various combined ANN architectures studied, including recurrent RNN networks, was several hours, even with the use of GPU graphics accelerators. For ANN, focused on the processing and recognition of retrospective information, an increase in the quality of recognition was achieved to 80 ... 95%.
Autonomous vehicles, surveillance systems, face detection systems lead to the development of accurate object detection system [1]. These sys… (see more)tems recognize, classify and localize every object in an image by drawing bounding boxes around the object [2]. These systems use existing classification models as backbone for Object Detection purpose. Object detection is the process of finding instances of real-world objects such as human faces, animals and vehicles etc., in pictures, images or in videos. An Object detection algorithm uses extracted features and learning techniques to recognize the objects in an image. In this paper, various Object Detection techniques have been studied and some of them are implemented. As a part of this paper, three algorithms for object detection in an image were implemented and their results were compared. The algorithms are “Object Detection using Deep Learning Framework by OpenCV”, “Object Detection using Tensorflow” and “Object Detection using Keras models”.
2018-12-17
International Journal of Computer Applications (published)